

Global and China Automotive Domain Control Unit (DCU) Industry Report, 2018-2019

Feb. 2019

STUDY GOAL AND OBJECTIVES

This report provides the industry executives with strategically significant competitor information, analysis, insight and projection on the competitive pattern and key companies in the industry, crucial to the development and implementation of effective business, marketing and R&D programs.

REPORT OBJECTIVES

- To establish a comprehensive, factual, annually updated and costeffective information base on market size, competition patterns, market segments, goals and strategies of the leading players in the market, reviews and forecasts.
- To assist potential market entrants in evaluating prospective acquisition and joint venture candidates.
- To complement the organizations' internal competitor information gathering efforts with strategic analysis, data interpretation and insight.
- To suggest for concerned investors in line with the current development of this industry as well as the development tendency.
- To help company to succeed in a competitive market, and

METHODOLOGY

Both primary and secondary research methodologies were used in preparing this study. Initially, a comprehensive and exhaustive search of the literature on this industry was conducted. These sources included related books and journals, trade literature, marketing literature, other product/promotional literature, annual reports, security analyst reports, and other publications. Subsequently, telephone interviews or email correspondence was conducted with marketing executives etc. Other sources included related magazines, academics, and consulting companies.

INFORMATION SOURCES

The primary information sources include Company Reports, and National Bureau of Statistics of China etc.

Copyright 2012 ResearchInChina

Abstract

Electronic control unit (ECU) serves as an automotive computer controller. Automotive electronic controller is used to receive and process signals from sensors and export control commands to the actuator to execute. Microprocessors, the core of an automotive ECU, embrace micro control unit (MCU), microprocessor unit (MPU), digital signal processor (DSP) and logic integrated circuits (IC). The global ECU leaders are Bosch, Denso, Continental, Aptiv, Visteon, among others.

As vehicle trend to use more electronics, ECU is making its way into all auto parts from anti-lock braking system, four-wheel drive system, electronically controlled automatic transmission, active suspension system and airbag system to body safety, network, entertainment and sensing and control systems. Vehicles' consumption of ECU then booms: high-class models use 50-70 ECUs on average, and some even carries more than 100 units.

When the one-to-one correspondence between the growing number of sensors and ECUs gives rise to underperforming vehicles and far more complex circuits, more powerful centralized architectures like domain control unit (DCU) and multi-domain controller (MDC) come as an alternative to the distributed ones.

The concept of domain control unit (DCU) was initiated by tier-1 suppliers like Bosch and Continental as a solution to information security and ECU development bottlenecks. DCU can make systems much more integrated for its powerful hardware computing capacity and availability of sundry software interfaces enable integration of more core functional modules, which means lower requirements on function perception and execution hardware. Moreover, standardized interfaces for data interaction help these components turn into standard ones, thus reducing the spending on research and development or manufacture. In other words, unlike peripheral parts just playing their own roles, a central domain control unit looks at the whole system.

Autonomous vehicle requires domain controllers not only to be integrated with versatile capabilities such as multi-sensor fusion, localization, path planning, decision making and control, V2X and high speed communication, but to have interfaces for cameras (mono/stereo), multiple radars, LiDAR, IMU, etc.

Copyright 2012ResearchInChina

Figure 1: Visteon integrates instrument ECU and head unit ECU into SmartCore cockpit domain controller

Copyright 2012ResearchInChina

To complete number crunching, a domain control unit often needs a built-in core processor with strong computing power for smart cockpit and autonomous driving at all levels. Solution providers include NVIDIA, Infineon, Renesas, TI, NXP and Mobileye. The scheme that powerful multi-core CPU/GPU chips are used to control every domain in a centralized way can replace former distributed automotive electric/electronic architectures (EEA).

Figure 2: evolution of Bosch E/E architecture. It has six layers, i.e., Modular, Integration, Centralization, Fusion, Vehicle Computer and Vehicle Cloud Computing. DCU is applied to the third layer (Centralization), and MDC the fourth (Fusion).

Copyright 2012ResearchInChina

In current stage, most new vehicles adopt DCU-based E/E architectures. In Singulato iS6's case, a DCU + automotive Ethernet based network topology is used to divide E/E architecture into 5 domains: intelligent driving, smart cockpit, body, chassis and power; an integrated design allows fusion of all sensor data into the intelligent driving domain controller which is in charge of data processing and decision making to implement ADAS functions such as adaptive cruise control, lane keeping and automatic parking. All imply that automakers need to develop their own ADAS/AD systems.

The study by "Cool Wax Gourd", a technical expert's Twitter-like Sina Weibo account, shows that: the evolution of three generations of Tesla models from Model S to Model X to Model 3, is actually a process of functional redistribution, namely, developing capabilities based on those from suppliers; Model S E/E architecture has been a fifth-layer one (Vehicle Computer) at the start.

As automotive E/E architectures evolve, there is a big shift in relationship between OEMs and automotive electronics suppliers, too. The trend for integrated automotive electronic hardware leads to the smaller number of electronics suppliers and the more important role of DCU vendors.

Being generally integrated with instrument clusters and head unit, a cockpit domain controller for instance, will be fused with air conditioner control, HUD, rearview mirror, gesture recognition, DMS and even T-BOX and OBU in future.

An autonomous vehicle that generates 4TB data an hour, needs a domain control unit to have some advanced competencies such as multi-sensor fusion and 3D localization.

Central gateway closely tied with domain controllers, takes charge of sending and receiving key security data, and is directly and only connected to the backstage of automakers. Through OTA updates to domain controllers, carmakers can develop new capabilities and ensure network security for faster deployment of functions and software.

DCU vendors and automakers will deepen their partnerships in research and development.

Vendors	Computing Platform	Cockpit DCU	Operating System/Hypervisor	Cockpit DCU Clients
Visteon	Qualcomm	SmartCore	ANDROID,LINUX	Geely, Daimler Benz, Dongfeng Motors, GAC
Continental	Qualcomm/Ren esas	Integrated body electronic platform IIP	QNX/PikeOS	
Bosch	Qualcomm	AI car computer	AGL	GM
Aptiv	Intel	ICC (integrated cockpit controller)	LINUX/ACRN	Great Wall Motor, Audi, Ferrari, Volvo
Desay SV	Qualcomm 820A TI J6	Smart cockpit DCU	nchina.	CHJAutomotive
соокоо	NXP	Auto Cabin		Four OEMs
Neusoft REACH	Intel	C4-Alfus	LINUX/ACRN	

Typical Cockpit DCU Vendors and Their Solutions and Customers

Desay SV argues that: tier-1 suppliers and OEMs will collaborate in the following two ways in the area of autonomous driving domain controller:

First, tier-1 suppliers are devoted to making middleware and hardware, and OEMs develop autonomous driving software. As tier-1 suppliers enjoy edges in producing products at reasonable cost and accelerating commercialization, automakers are bound to partner with them: OEMs assume software design while tier-1 suppliers take on production of hardware and integration of middleware and chip solutions.

Second, tier-1 suppliers choose to work with chip vendors in solution design and research and development of central domain controllers, and then sell their products to OEMs. Examples include Continental ADCU, ZF ProAI and Magna MAX4.

It can be seen from the two tables below that there is a tendency towards cooperation between controller vendors and OEMs, domain controller suppliers and chip vendors, in both cockpit and autonomous driving domain controllers.

Copyright 2012ResearchInChina

Vendors	Computing Platform	DCU	Partners	Customers	
Visteon	Compatible multiprocessor architecture	DriveCore	Tencent	GAC	
Continental	Compatible multiprocessor architecture	ADCU			
TTTech	NVIDIA	zFAS/iECU	Aptiv, SAIC, Samsung	Audi. SAIC	
Aptiv	Intel	CSLP	Mobileye, Intel, Ottomatika		
Veoneer	NVIDIA Xavier	"Zeus" supercomputer	Zenuity		
ZF	NVIDIA Xavier	Central controller ProAl	Baidu	Chery	
Magna		MAX4	Innoviz	BMW	
HiGo Automotive	Intel, Nvidia, NXP, Zhaoxin,Cambrico n	WiseADCU AD computation domain control unit, WiseIMCU chassis motion domain control unit	Maxieye, Smarter Eye, Cheng-Tech, RoboSense, SureStar, OuBaiTuo, etc.	Baidu, a Baidu's AD leading enterprise, a port logistics leading enterprise, SF Motors, Hanteng Auto, Leopaard, BAIC	
In-driving	Nvidia	s archir	china	com	
соокоо	NXP	Auto Wheel	NXP, RENESAS, AMBARELLA, Sony, etc.	Five OEMs	
Baidu	TI Nvidia	BCU-MLOC BCU-MLOP	Desay SV United Automotive Electronic Systems		
iMotion	TI/NXP	iMo DCU central controller	Mobileye	Zotye	
HiRain Technologies	NXP	ADAS Domain Controller			
Neusoft REACH	Xilinx	AD DCU	Xilinx	Passenger car manufacturers and commercial vehicle manufacturers	
Desay SV	NVIDIA	AD Computing Platform	Nvidia, XPENG Motors	XPENG Motors	

Typical Autonomous Driving DCU Vendors and Their Customers and Partners

Copyright 2012ResearchInChina

DCU, as a kind of OEM automotive electronics, usually takes over two years from design to mass production and launch. Most of the above suppliers are still researching and developing DCU. Aptiv and Visteon are far ahead of peers and have mass-produced DCU.

The global automotive DCU (cockpit + autonomous driving) shipments will exceed 14 million sets in 2025, with the average annual growth rate of 50.7% between 2019 and 2025, according to ResearchInChina.

Throughout the DCU industry, Chinese companies have emerged strikingly in the past two years, such as Desay SV, Baidu, Neusoft, HiGO Automotive, COOKOO, In-driving, iMotion, etc., all of which now takes emerging and non-first-tier traditional automakers as their key clients.

Copyright 2012ResearchInChina

Table of contents

1 From ECU to Domain Control Unit (DCU)

- 1.1 ECU
- 1.1.1 Block Diagram of Typical Automotive Electronic Control Circuit
- 1.1.2 Automotive Electronic Control Unit Industry Chain
- 1.1.3 ECU Evolution
- 1.1.4 Enormous Growth of ECU and Emergence of Domain Controller
- 1.2 Domain Controller
- 1.2.1 Typical Five Major Domain Controllers
- 1.2.2 Why to Use Domain Controller
- 1.2.3 Domain Controller Shares Hardware Resources and Realizes the Sharing of Basic Software
- 1.2.4 Domain Controller Network Architecture
- 1.3 Domain Controller Related Chip
- 1.3.1 Infineon AURIX Chip
- 1.3.2 Infineon AURIX TC3XX
- 1.3.3 NVIDIA DRIVE Series Chips
- 1.3.4 TI Cockpit Chip
- 1.3.5 TI Jacinto
- 1.3.6 Renesas Chip
- 1.3.7 Qualcomm Chip
- 1.3.8 NXP Chip
- 1.4 Estimated Global Market Size of Automotive Domain Controller (Cockpit + AD)

2 Gateway and E/E Architecture

- 2.1 Gateway Controller
- 2.1.1 Typical Gateway Controller (1)
- 2.1.2 Typical Gateway Controller (2)

2.1.3 NXP's Gateway Solutions 2.1.4 ST's Safety Gateway Solutions 2.2 Electrical/Electronic Architecture (EEA) 2.2.1 Typical Automotive EEA (1) 2.2.2 Typical Automotive EEA (2) 2.2.3 Potential E/E Architecture (1) in Future 2.2.4 Potential E/E Architecture (2) in Future 2.2.5 Distributed E/E System Architecture (Continental) 2.2.6 Future Automotive E/E Architecture (NXP) 2.2.7 Future Automotive E/E Architecture (Bosch) 2.2.8 Service-oriented Architecture (SOA) 2.3 E/E Architecture Samples of Automakers 2.3.1 Daimler-Benz 1st-Gen E/E Architecture 2.3.2 Daimler-Benz 2nd-Gen E/E Architecture 2.3.3 E/E Architecture of MAN 2.3.4 SCANIA's E/E Architecture 2.3.5 IVECO's E/E Architecture 2.3.6 Tesla Model 3 Architecture

3 Cockpit Domain Controller

3.1 Traditional Cockpit System Design
3.2 Cockpit Domain before and after 2020
3.3 Example of Complex Design of Cockpit Domain Controller
3.4 Visteon's Cockpit Domain Controller
3.5 NXP Cockpit Solutions
3.6 iMX8 Solutions
3.7 TI Cockpit Solutions
3.8 Development Tendency of Cockpit Domain Controller

Table of contents

3.9 Development Trends of Future Cockpit Electronics

4 ADAS/AD Domain Controller

4.1 AD Domain Controller

- 4.2 Typical AD Domain Controllers (13 Models)
- 4.3 Aptiv's ADAS Multi-domain Controller
- 4.4 Tesla Autopilot 2.0 / 2.5
- 4.5 Veoneer's AD ECU

5 Foreign Domain Controller Companies

5.1 Visteon

- 5.1.1 Profile of Visteon
- 5.1.2 Revenue in 2018 and Orders for Domain Controller
- 5.1.3 Drive Core Autonomous Driving (AD) Platform
- 5.1.4 Drive Core Autonomous Driving (AD) Platform Architecture
- 5.1.5 Smart Core Cockpit Domain Controller
- 5.1.6 Visteon Automotive Electronics Architecture
- 5.2 Continental
- 5.2.1 High-performance SoC Processor Facilitates the Development of Domain Controller
- 5.2.2 Continental's Safety Domain Control Unit (SDCU)
- 5.2.3 Continental's Assisted & Automated Driving Control Unit (ADCU)
- 5.3 Bosch
- 5.3.1 Hybrid Architecture of Bosch Domain Classification ECU
- 5.3.2 Bosch Cross Domain Control Unit
- 5.4 Veoneer
- 5.4.1 Zeus ADAS ECU

5.4.2 Zeus ADAS ECU – Functional Architecture 5.5 ZF 5.5.1 ProAl Controller 5.5.2 ZF's Collaboration with Baidu 5.5.3 4th-generation ProAl 5.6 MAGNA 5.6.1 Profile of MAGNA 5.6.2 MAX4 Autonomous Driving (AD) Platform Domain Controller 5.6.3 MAX4 Enables L4 Automated Driving 5.7 Tesla AD Platform 5.7.1 Functional Characteristics of AutoPilot2.0 Domain Controller 5.7.2 Technical Parameters of AutoPilot2.0 Domain Controller 5.7.3 Functional Characteristics of AutoPilot2.5 Domain Controller 5.8 TTTech 5.8.1 Profile of TTTech 5.8.2 TTTech and MotionWise 5.8.3 TTTech and zFAS 5.8.4 TTTech's Technical Superiorities in Autonomous Driving (AD) Controller 5.8.5 Joint Funding of TTTech with SAIC Motor

6 Chinese Domain Controller Vendors

6.1 HiGo Automotive
6.1.1 Profile
6.1.2 Wise ADCU Series Products
6.1.3 Wise ADCU M6
6.1.4 Wise ADCU M6 Interfaces and Parameters
6.1.5 Wise ADCU X1

Table of contents

- 6.1.6 Wise ADCU X1 Hardware Specifications
- 6.1.7 Customers and Partners
- 6.2 In-Driving
- 6.2.1 TITAN Domain Controller
- 6.2.2 Composition of TITAN 3 Domain Controller
- 6.2.3 Block Diagram of TITAN-III
- 6.2.4 Performance Indices of TITAN-III Domain Controller
- 6.2.5 Athena
- 6.3 COOKOO
- 6.3.1 Cookoo Automotive Computing Platform Architecture
- 6.3.2 Cookoo AutoCabin-J1 Architecture
- 6.3.3 Cookoo AutoCabin-J2 Architecture
- 6.3.4 Cookoo AutoCabin-J3 Architecture
- 6.3.5 Cookoo AutoCabin-Centralized Domain Vehicle Electronics Architecture
- 6.3.6 Product Roadmap of Cookoo Intelligent Computing Platform
- 6.4 Baidu Domain Controller
- 6.4.1 Baidu AD Brain: Conventional IPC Centralized Architecture
- 6.4.2 Baidu AD Brain: Multi-domain Solutions
- 6.4.3 BCU Mass-production Scheduled in 2019
- 6.4.4 BCU-MLOC and BCU-MLOP
- 6.4.5 BCU-MLOP and BCU-MLOP2
- 6.5 iMotion
- 6.5.1 Profile
- 6.5.2 iMo DCU 3.0 Was Unveiled
- 6.6 HiRain Technologies
- 6.6.1 Domain Controller

- 6.6.2 Vehicle Body Domain Controller Architecture
- 6.7 Neusoft REACH
- 6.7.1 REACH Central Domain Controller for Autonomous Driving
- 6.7.2 REACH DCU Functions for Autonomous Driving
- 6.7.3 Cabin Products of Neusoft
- 6.8 Desay SV
- 6.8.1 Profile
- 6.8.2 Strategic Layout
- 6.8.3 New-generation Smart Cockpit
- 6.8.4 Orders for Its Smart Cockpit Capable of 4-Screen Interaction
- 6.8.5 Desay SV Intelligent Driving Product Lines
- 6.8.6 Desay SV Highway Pilot and AVP Solutions
- 6.8.7 Desay SV and DearCC ENOVATE ME7
- 6.8.8 Cooperation between Desay SV and NVIDIA in the Development of Domain Controller
- 6.9 ECO-EV
- 6.9.1 Autonomous Driving (AD) ACU
- 6.9.2 Technical Features

How to Buy

You can place your order in the following alternative ways:

- 1.Order online at www.researchinchina.com
- 2.Fax order sheet to us at fax number:+86 10 82601570
- 3. Email your order to: report@researchinchina.com
- 4. Phone us at +86 10 82600828

Party A:		
Name:		
Address:		
Contact Person:	Tel	
E-mail:	Fax	

Party B:				
Name:	Beijing Waterwood Technologies Co., Ltd (ResearchInChina)			
Address:	Room 801, B1, Changyuan Tiandi Building, No. 18, Suzhou Street, Haidian District, Beijing, China 100080			
Contact	Liao Yan	Phone:	86-10-82600828	
Person:				
E-mail:	report@researchinchina.com	Fax:	86-10-82601570	
Bank details:	Beneficial Name: Beijing Waterwood Technologies Co., Ltd Bank Name: Bank of Communications, Beijing Branch			
	Bank Address: NO.1 jinxiyuan shijicheng,Landianchang,Haidian			
	District,Beijing			
	Bank Account No #: 110060668012015061217			
	Routing No # : 332906			
	Bank SWIFT Code: COMMCNSHBJG			

Title	Format	Cost
Total		

Choose type of format

PDF (Single user license)	.3,200	USD
Hard copy	3,400	USD
PDF (Enterprisewide license)	4,800	USD

 ※ Reports will be dispatched immediately once full payment has been received.
 Payment may be made by wire transfer or credit card via PayPal.

About ResearchInChina

ResearchInChina (www.researchinchina.com) is a leading independent provider of China business intelligence. Our research is designed to meet the diverse planning and information needs of businesses, institutions, and professional investors worldwide. Our services are used in a variety of ways, including strategic planning, product and sales forecasting, risk and sensitivity management, and as investment research.

Our Major Activities

- □ Multi-users market reports
- Database-RICDB
- Custom Research
- Company Search

RICDB (<u>http://www.researchinchina.com/data/database.html</u>), is a visible financial data base presented by map and graph covering global and China macroeconomic data, industry data, and company data. It has included nearly 500,000 indices (based on time series), and is continuing to update and increase. The most significant feature of this base is that the vast majority of indices (about 400,000) can be displayed in map.

After purchase of our report, you will be automatically granted to enjoy 2 weeks trial service of RICDB for free.

After trial, you can decide to become our formal member or not. We will try our best to meet your demand. For more information, please find at www.researchinchina.com

For any problems, please contact our service team at: