Cockpit AI Agent Research Report, 2024
  • July 2024
  • Hard Copy
  • USD $2,700
  • Pages:200
  • Single User License
    (PDF Unprintable)       
  • USD $2,500
  • Code: GX012
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $2,900
      

Cockpit AI Agent: Autonomous scenario creation becomes the first step to personalize cockpits

In AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024, ResearchInChina mentioned that the core of an AI Agent uses a large language model (LLM) as its core computing engine (LLM OS). In the AI service framework, the LLM acts as AI core and the Agent acts as AI APP.? With the help of reasoning and generation capabilities of? AI foundation model, the Agent can create more cockpit scenarios, while further improving current multimodal interaction, voice processing and other technologies in the cockpit.

座舱 AI AGENT 1_副本.png

Compared with the traditional OS, AI OS is programmed in natural language, which is more suitable for human operation and convenient for customization and personalized human-computer interaction. The Agent responds to user prompts or instructions in natural language, and can perform a lot of tasks according to its interaction with physical or digital environment.

座舱 AI AGENT 2_副本.png

Foundation models spawn Agent customized scenarios

Since AI foundation models were installed in cars, they have been widely used in multimodal interaction scenarios. OEMs have started from voice assistants to further improve? intelligent processing of user commands:
Before foundation models got on cars, the wake-up rate and effective instructions of voice assistants in cockpits are at a low level;
After foundation models were available in cars, not only has voice recognition become more intelligent, but the application of expression monitoring and gesture control have also been improved, with effective commands and daily active rates increasing significantly.

AI foundation models further enhance the user experience of smart cockpits through strong context processing and reasoning capabilities. Please refer to the following dialogue:

(Mobility scenario)
--**Tongxue! (the name of a voice assistant)
-I am here!
-There seems to be a prairie ahead. Please take a picture for me!
-Wait a moment, and I will capture the beautiful scenariory of the prairie for you. I'll let you know when the photo is taken. Is there anything else I can help you with?
-Send it to Moments immediately. I want my friends to have a look at this beautiful scenariory.
-Ok, according to your authorized account, please choose the material and filter style.
-Just this one, with a caption.
-Ok, three captions have been generated for you. Which one do you like?
-Just this one.

(You enter the office and receive a phone call)
-There is a phone call from a customer, and I have transferred it to the IVI for you.? Would you like to answer it?
-Yes, and turn on the office mode.
-Ok, I will generate an avatar of the customer for you and start the conversation. Do you have any questions or things to discuss? I will record the conversation and provide you with the minutes of the meeting after it is over.
(The avatar is generated)
-Now you can start the conversation.

The above scenarios will not be materialized in the cockpit until 2024 when foundation models are installed on vehicles by some OEMs.

For example, IM L6 has built Carlog and City Drive scenarios to enable the AI foundation models to proactively recommend food and attractions and allow users to post them on social media:
Carlog: Actively perceive the scenario during driving through AI vision foundation model, mobilize four cameras to take photos, automatically save and edit them, and support one-click share in Moments.
City Drive: Cooperate with Volcengine to model nearby food, scenic spots and landmarks in real time in the digital screen, and push them according to users' habits and preferences.

座舱 AI AGENT 3.png

座舱 AI AGENT 4.png

The applicability of foundation models in various scenarios has stimulated users' demand for intelligent agents that can uniformly manage cockpit functions. In 2024, OEMs such as NIO, Li Auto, and Hozon successively launched Agent frameworks, using voice assistants as the starting point to manage functions and applications in cockpits.

Agent service frameworks can not only manage cockpit functions in a unified way, but also provide more abundant scenario modes according to customers' needs and preferences, especially supporting customized scenarios for users, which accelerates the advent of the cockpit personalization era.

座舱 AI AGENT 5_副本.png

For example, NIO’s NOMI GPT allows users to set an AI scenario with just one sentence:

座舱 AI AGENT 6.png

Core competence of cockpit Agents

AI Agents in the era of foundation models are based on LLMs, whose powerful reasoning expands the applicable scenarios of AI Agents that can improve the thinking capability of foundation models through feedback obtained during operation. In the cockpit, the Agent capability paradigm can be roughly divided into "Understanding" + "Planning" + "Tool Use" + "Reflection".

座舱 AI AGENT 7_副本.png

When Agents first get on cars, cognitive and planning abilities are more important. The understanding of task goals and the choice of implementation paths directly determine the accuracy of performance results, which in turn affect the scenario utilization rate of Agents.

For example, in Xiaomi's voice interaction process, semantic understanding is the difficulty of the entire automotive voice processing process. XiaoAi handles semantic parsing through a semantic parsing model.

座舱 AI AGENT 8_副本.png

After the mass production of Agents, the personalized cockpits that support users to customize scenario modes become the highlight, and Reflection becomes the most important core competence at this stage, so it is necessary to build an Agentic Workflow that is constantly learning and optimizing.

For example, Lixiang Tongxue offered by Li Auto supports the creation of one-sentence scenarios. It is backed by Mind GPT's built-in memory network and online reinforcement learning capabilities. Mind GPT can remember personalized preferences and habits based on historical conversations. When similar scenarios recur, it can automatically set scenario parameters through historical data to fit the user's original intentions.

座舱 AI AGENT 9_副本.png

At the AI OS architecture setting level, we take SAIC Z-One as an example:
Z-One accesses the LLM kernel (LLM OS) at the kernel layer, which controls the interfaces of AI OS SDK and ASF with the original microkernel respectively, in which AI OS SDK receives the scheduling of the LLM to promote the Agent service framework of the application layer. The Z-One AI OS architecture highly integrates AI with CPU. Through SOA atomic services, AI is then connected to the vehicle's sensors, actuators and controllers. This architecture, based on a terminal-cloud foundation model, can enhance the computing power of the terminal-side foundation model and reduce operational latency.

Application Difficulty of Cockpit AI Agents

Agents connect to users and execute commands. In the application process, in addition to the technical difficulties of putting foundation models on cars, they also face scenario difficulties. In the process of command reception-semantic analysis-intention reasoning-task execution, the accuracy of the performance results and the delay in human-computer interaction directly affect the user's riding experience.

座舱 AI AGENT 10_副本.png

Humanization of interaction
For example, in the "emotional consultant" scenario, Agents should resonate emotionally with car owners and perform anthropomorphism. Generally, there are three forms of anthropomorphism of AI Agents: physical anthropomorphism, personality anthropomorphism, and emotional anthropomorphism.

座舱 AI AGENT 11_副本.png

NIO's NOMI GPT uses "personality anthropomorphism" and "emotional anthropomorphism":

座舱 AI AGENT 12_副本.png

Foundation model performance
In the "encyclopedia question and answer" scenario, Agents may be unable to answer the user's questions, especially open questions, accurately because of LLM illusion after semantic analysis, database search, answer generation and the like.

Current solutions include advanced prompting, RAG+knowledge graph, ReAct, CoT/ToT, etc., which cannot completely eliminate “LLM illusion”. In the cockpit, external databases, RAG, self-consistency and other methods are more often used to reduce the frequency of “LLM illusion”.

Some foundation model manufacturers have improved the above solutions. For example, Meta has proposed to reduce “LLM illusion” through Chain-of-Verification (CoVe). This method breaks down fact-checking into more detailed sub-questions to improve response accuracy and is consistent with the human-driven fact-checking process. It can effectively improve the FACTSCORE indicator in long-form generation tasks.

CoVe includes four steps: query, plan verification, execute verification and? final verified response.

座舱 AI AGENT 13_副本.png

1 Introduction to Cockpit AI Agent

1.1 Status Quo of AI Agent
1.1.1 What Is AI Agent?
1.1.2 Status Quo of AI Agent
1.1.3 Four Capabilities of AI Agent
1.1.4 Three Collaborative Models of AI Agent
1.1.5 Application Scenarios of AI Agent
1.1.6 Agentic Workflow
1.2 Cockpit AI Agent
1.2.1 Cockpit AI Agent Classification
1.2.2 Cockpit AI Agent Evolution: Cognitive Driven
1.2.3 Process of AI Agent Landing in Cockpit: from Large Model to AIOS
1.2.3 Process of AI Agent Landing in Cockpit: Two Ways
1.2.4 Cockpit AI Agent Interaction Mechanism
1.2.5 Four Capability Paradigms of Cockpit AI Agent
1.2.6 Evolution of AI Agent: Active Interaction
1.2.6 Evolution of AI Agent: Reflection Optimization
1.3 Application Scenario of Cockpit Agent 
1.3.1 Application Scenario Classification: by Interaction Type
1.3.2 Application Scenario Classification: by Large Model Type
1.3.3 Application Scenario Classification: by Function Type
1.4 Application Status of Cockpit Agent
1.4.1 Application Status (1): Multi-modal Interaction Spawns Agent landing
1.4.2 Application Status (2): Scenario Creation Becomes an Important Approach to Agent Evolution
1.4.3 Application Status (3):
1.4.4 Application Status (4):
1.4.5 Application Status (5): Transition Program

2 AI Agent Technology Implementation Path

2.1 AI OS Architecture
2.1.1 AI OS Architecture Design
2.1.2 8 Features of AI OS Components
2.1.3 AI OS Optimization Technology (1): MemGPT Optimizes Context Expansion Process
2.1.3 AI OS optimization technology (2):
2.1.4 AI OS Core: Key Capabilities of LLM
2.1.5 Core Features of AI OS components 
2.1.6 AI OS Design Case: AI Service Structure of SAIC Z-ONE
2.1.6 AI OS Design Case: Meizu Flyme AI OS can be Transferred to Car
2.2 Technology related to AI Vision Large Model
2.2.1 Advantages and Disadvantages of commonly used AI Technology in Automobiles
2.2.2 Construction of AI Model for In-Cabin Monitoring
2.2.3 AI Application Cases of In-Cabin Monitoring
2.3 Application Technology of Cockpit Large Model 
2.3.1 Overview
2.3.2 Baidu: 5 Steps of Emotional Cockpit Adjustment
2.3.3 Geely: End-side Large Model Deployment Technology
2.3.4 Leopard: Knowledge Graph Optimization for Q&A Scenarios
2.3.5 University of Mining and Technology: Visual Large Model + Adaptive Adjustment
2.4 Application Trends of AI in Cockpit
2.4.1 Trend 1:
2.4.2 Trend 2:
2.4.3 Trend 3:
2.4.4 trend 4:
2.4.5 trend 5:
2.5 Cockpit Agent Solution
2.5.1 Application Painpoits of Agent in Automotive  
2.5.2 Solution (1): RAG Enhances Voice assistant's Intelligent Q & A Capabilities
2.5.3 Solution (2):
2.5.4 Solution (3): Zero Trust Architecture & Confidential Computing Protect Cloud Data Security
2.5.5 solutions (4):
2.5.6 Solution (5): Working Memory and Brain Science Become one of the Paths to Promote Evolution of AI Agents
2.5.7 solutions (6):
2.5.8 Solution (7): Anthropomorphizing Emotional Cockpit
2.5.8 Solution (7): NIO NomiGPT Emotional Personification Case
2.5.8 Solutions (7):
2.5.8 Solution (7): Digital Human Enhances Agent Emotional Applicability

3 Application Analysis of Cockpit AI Agent of Suppliers 

List of Cockpit Agent Functions by Suppliers

3.1 ThunderSoft
3.1.1 Large Model Layout
3.1.2 AquaDrive OS and Rubik's Cube Model Integration
3.1.3 AI Framework Design in AquaDrive OS
3.2 Huawei
3.2.1 AI Application Planning
3.2.2 Function Construction of HarmonySpace Smart Cockpit
3.2.3 AI Features of Harmony OS
3.2.4 Two Implementations of Huawei Harmony OS "Visible to Say"
3.3 Alibaba Cloud
3.3.1 Ali Edge AI Model and Cloud Computing Combination
3.3.2 Functional Application of Qianwen Edge AI Model on IVI
3.3.3 Qianwen Edge AI Model is Installed in FAW IVI 
3.4 Tencent
3.4.1 Function of Hunyuan Large Model in Cockpit
3.5 Baidu
3.5.1 Baidu Smart Cockpit 2.0 with ERNIE Bot
3.5.2 Baidu Edge AI Model Mounted on Jiyue
3.6 iFLYTEK
3.6.1 Function List of  iFLYTEKSpark Model 
3.6.2 Development History of iFLYTEKSpark Model  
3.6.3 How iFLYTEK Spark Cockpit Integrates into AI Services
3.6.4 iFLYTEK Spark Cockpit Edge Deployment Mode
3.6.5 Application of Spark Model in Mobile phone-Vehicle Interconnection
3.6.6 Application Technology of  iFLYTEK Spark  Model
3.7 AISpeech
3.7.1 Development History of AI Speech Technology
3.7.2 DFM Large Model Iterated to 3.0
3.7.3 DFM Large Model "1 + N" Layout
3.7.4 Fusion Large Model Solution
3.8 Lenovo
3.8.1 Six Characteristics of AI Agent Architecture
3.8.2 Agent "Three Characteristics" Accelerate Cockpit Deployment
3.8.3 AI Vehicle Computing Framework Applies to Both Smart Driving and Cockpit
3.8.4 Vientiane Cockpit AI Platform Supports Three Types of Functions
3.8.5 Core Competencies of Edge Applications
3.9 SAIC Z-ONE
3.9.1 AI Service Structure is Built According to 4 Levels
3.9.2 AI Changes to Hardware Layer
3.9.3 AI Changes to Software Layer
3.9.4 AI Changes to Cloud/Vehicle Deployment
3.10 Zhipu AI
3.10.1 Cockpit Design Architecture Based on AI Large Model
3.10.2 Scenario Design of AI Large Model
3.10.3 Design of AI Large Model for Cockpit Interaction Pain Points
3.11 Microsoft
3.11.1 Cockpit Voice Solution
3.11.2 Improves Cockpit Performance by Integrating Private Enterprise Knowledge
3.12 TINNOVE
3.12.1 Three Levels of AI Model Empower Cockpit
3.12.2 Four Stages of Smart Cockpit Planning
3.12.3 AI Cockpit Architecture Design
3.12.4 AI Large Model Service Form
3.12.5 AI Large Model Application Scenario
3.12.6 TTI OS and Digital Human Combination
3.13 4 Main Application Scenarios of Desay SV Cockpit Large Model
3.14 Rockchip Uses AI Sound Field Technology in Cockpit
3.15 NNG Applies AI to Navigation Technology

4 Application Analysis of Cockpit AI Agent of OEMs

4.1 Application Status of Cockpit Agent in OEMs
4.1.1 List of Cockpit Agent Functions of each OEM
4.1.2 List of Cockpit Agent Scenarios of each OEM
4.1.3 List of Large Models that have been filed in Automotive Industry 
4.2 NIO
4.2.1 NIO NOMI GPT Supports Edge Deployment
4.2.2 NIO NOMI GPT Adopts Modal Internal and External Multi-dimensional Comparative Learning Technology
4.2.3 Six Scenarios of  NIO NOMI GPT
4.3 Xpeng
4.3.1 Three Application Scenarios of Xpeng AI Tianji system
4.4 Li Auto
4.4.1 Lixiang Tongxue: Building Multiple Scenes
4.4.2 Mind GPT: Building AI Agent as Core of Large Model
4.4.3 Mind GPT: Multimodal Perception
4.4.4 Large Model Training Platform Adopts 4D Parallel Mode
4.4.5 Cooperate with NVIDIA to Land Inference Engine
4.4.6 Mind GPT: L9 Ultra Passes AI Large model A-level Certification
4.5 Xiaomi
4.5.1 Xiao Ai Covers Scenarios through Voice Commands
4.5.2 Voice Task Analysis and Execution Process
4.5.3 Xiao Ai Accurate Matching by  RAG
4.5.4 Deployment Location of Xiaomi AI Service Framework in Operating System
4.5.5 Two types of  Large Models as Core of Xiaomi AI
4.5.6 Essence of Xiaomi AI Smart Center
4.6 BAIC
4.6.1 Three Stages of BAIC Large Model Development
4.6.2 Specific Scenario of BAIC Large Model (1): Customized Scenario Function
4.6.2 Specific Scenario of BAIC Large Model (2): Emotional Mode + Digital Human
4.6.3 BAIC Agent Platform Architecture: Baimo Huichuang
4.6.4 BAIC's Planning Ideas for Large Model Products
4.7 Hozon
4.7.1 Application Status of AI Cockpit Function 
4.7.2 Cockpit Design Concept for New Human-Machine Interaction Mode
4.7.3 Cockpit Application of Neta AI model
4.8 Dongfeng
4.8.1 Cockpit Architecture Based on AI Large Model
4.8.2 Application Types of  AI Large Model
4.8.3 Main Scenario and Design Path of AI Large Model  in Cockpit
4.8.4 Application of Dongfeng Vision AI Large Model in Cockpit
4.8.5 Workflow of Dongfeng AI Large Model in/out of Cockpit:  "Four-step" Paradigm
4.8.6 Next-step Planning of Dongfeng AI Cockpit
4.9 JAC
4.9.1 Four Applications of JAC AI Cockpit
4.9.2 JAC AI Large Model Source and Boarding Case
4.10 Chang'an
4.10.1 Changan will Integrate AI into SOA Architecture Layer
4.10.2 Planning of "Digital & Intelligent" Cockpit
4.10.3 AI Achievements and Strategic Priorities
4.10.4 Realize Automatic Switching of Cockpit Scenarios and Functions
4.11 Volkswagen: Evolving to Agents through GPTs
4.12 Mercedes-Benz: Personalized Service with MBUX Virtual Assistant
4.13 Cockpit Application of GAC AI Large Model
4.14 Cockpit Application of Great Wall Large Model
4.15 Chery self-developed LION AI + iFLYTEK Spark Model  
4.16 Geely
4.16.1 Two Forms of Geely Large Model Cockpit Application  
4.16.2 Geely Xingrui Large Model Application Case
4.17 IM AI Large Model Builds Active Perception Scenario
 

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号