Autonomous Driving Data Closed Loop Research Report, 2024
  • Sept.2024
  • Hard Copy
  • USD $4,400
  • Pages:323
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: FZQ015
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop?

As software 2.0 and end-to-end technology are introduced into autonomous driving, the intelligent driving development model has evolved from the rule-based sub-task module to the data-driven stage AI 2.0, and is gradually developing towards artificial general intelligence (AGI), namely, AI 3.0. 

数据闭环 1.png

At the Auto China 2024, SenseAuto showcased its next-generation autonomous driving technology: preview of DriveAGI, which is based on large multimodal models for improvement and upgrade of end-to-end intelligent driving solutions. DriveAGI is the evolution of autonomous driving foundation models from data-driven to cognition-driven, beyond the concept of driver, deepening understanding of the world, and boasting greater reasoning, decision and interaction capabilities. In autonomous driving, it is currently the technical solution that is closest to human thinking patterns, can understand human intentions best, and has the strongest ability to cope with difficult driving scenarios. 

数据闭环 2.png

Data closed loop is indispensable to autonomous driving R&D after AI 1.0, but at different stages of AI application in autonomous driving, the requirements for each link of data closed loop vary greatly. 

数据闭环 3.png

What changes will the full-stack model development of intelligent driving systems bring to the data closed loop?

1. The data collection mode has shifted from large-scale collection by collection vehicles to long-tail scenario collection by production vehicles, with more emphasis on high-quality data.
 
From the perspective of data flow, there are currently many ways to collect intelligent driving data, including collection by special collection vehicles, data collection and backhaul by production vehicles, roadside data collection and fusion, traffic data collection by drones at low altitudes, and simulated synthetic data, in a bid to achieve the maximum coverage, the most generalized scenarios, and the most complete data types, and ultimately fulfill the three elements of data: mass, completeness, and accuracy. Wherein, data collection by production vehicles is the mainstream mode.   

数据闭环 4.png

As can be seen from the above table, OEMs keep accumulating massive amounts of intelligent driving data with production vehicles, and extracting effective and high-quality data to train AI algorithms. For example, Li Auto has scored the driving behaviors of more than 800,000 car owners, about 3% of which are scored above 90 and can be called "experienced drivers." The driving data of the experienced drivers of fleets is the fuel for training end-to-end models. It is estimated that by the end of 2024, Li Auto's end-to-end model is expected to learn over 5 million kilometers.  

So, with sufficient enough data, how can we fully extract effective scene data and mine higher-quality training data? You can get to know from the following examples:

In terms of data compression, the data collected by vehicles often comes from the environmental perception data of vehicle systems and various sensors. Before being used for analysis or model training, the data must be preprocessed and cleaned strictly to ensure its quality and consistency. The vehicle data may come from different sensors and devices, and each device may have its own specific data format. High-definition intelligent driving scene data stored in RAW format (i.e., raw camera data that has not been processed by the ISP algorithm) will become a trend of high-quality scene data in the future. In Vcarsystem’s case, its "camera-based RAW data compression and collection solution" not only improves the efficiency of data collection, but also maximizes the integrity of the raw data, providing a reliable foundation for subsequent data processing and analysis. Compared with the traditional ISP post- compressed data replay, RAW compressed data replay avoids the information loss in the ISP processing process, and can restore the raw image data more accurately, improving the accuracy of algorithm training and the performance of the intelligent driving system.   

数据闭环 5.png

As for data mining, data mining cases based on offline 3D point cloud foundation models deserve attention. For example, based on offline point cloud foundation models, QCraft can mine high-quality 3D data and continuously improve object recognition capabilities. Not only that, QCraft has also built an innovative multimodal model based on text to image. Just with natural language text descriptions, the model can automatically retrieve corresponding scene images without supervision and mine many long-tail scenes that are difficult to find in ordinary data use and hard to encounter in life, thereby improving the efficiency of mining long-tail scenes. For example, as text descriptions such as "a large truck traveling in the rain at night" and "people lying at the roadside" are inputted, the system can automatically give a feedback on the corresponding scene, favoring special analysis and training.  

数据闭环 6.png 

2. Data labeling is heading in the direction of AI-automated high-precision labeling, and will tend to be used less or no longer needed in the future.

As foundation models find broad application and deep learning technology advances, the demand for data labeling makes explosive growth. The performance of foundation models depends heavily on the quality of input data. So the requirements for the accuracy, consistency, and reliability of data labeling become increasingly higher. To meet the high demand for data labeling, many data labeling companies have begun to develop automatic labeling functions to further improve data labeling efficiency.  Examples include:       

Based on the automation capabilities of foundation models, DataBaker Technology has launched 4D-BEV, a new labeling tool which supports the processing of hundreds of millions of pixel point clouds. It helps to quickly and accurately perceive and understand the surroundings of the vehicle, and combines static and dynamic perception tasks for multi-perspective, multi-sequential labeling of objects such as vehicles, pedestrians and road signs, providing more accurate information like object location, speed, posture and behavior. It can also provide interactive information of different objects in the scene, helping the autonomous driving system to better understand the traffic conditions on the road, so as to make more accurate decisions and control. To improve the efficiency and accuracy of labeling, DataBaker Technology adds machine vision algorithms to 4D-BEV to automatically complete complex labeling work, enabling high-quality recognition of lane lines, curbs, stop lines, etc.     

MindFlow’s SEED data labeling platform supports all types of 2D, 3D, and 4D labeling in autonomous driving and other scenarios, including 2/3D fusion, 3D point cloud segmentation, point cloud sequential frame overlay, BEV, 4D point cloud lane lines and 4D point cloud segmentation, and covers all labeling sub-scenarios of autonomous driving. In addition, its AI algorithm labeling model incorporates AI intelligent segmentation based on the SAM segmentation model, static road adaptive segmentation, dynamic obstacle AI preprocessing, and AI interactive labeling. It improves the average efficiency of data labeling in typical autonomous driving scenarios by more than 4-5 times, and by more than 10-20 times in some scenarios. In addition, MindFlow’s data labeling foundation model is based on weak supervision and semi-supervised learning, and uses a small amount of manually labeled data and a mass of unlabeled data for efficient detection, segmentation, and recognition of scene objects.      

数据闭环 7.png

Additionally, on July 27, 2024, NIO officially announced NWM (NIO World Model), China's first intelligent driving world model. As a multivariate autoregressive generative model, it can fully understand information, generate new scenes, and predict what may happen in the future. It is worth noting that as a generative model, NWM can use a 3-second driving video as Prompt to generate a 120-second video. Through the self-supervision process, NWM can need no data labeling and becomes more efficient. 

3. Simulation testing is becoming increasingly important in development of intelligent driving. High accuracy and high restoration capabilities are the key to improving the quality of scene coverage.   

High-level intelligent driving needs to be tested in various complex and diverse scenarios, which requires not only high precision sensor perception and restoration capabilities, but also powerful 3D scene reconstruction capabilities and scene coverage generalization capabilities. 

PilotD Automotive’s full physical-level sensor model can simulate detailed physical phenomena, for example, multi-path reflection, refraction, interference and multi-path reflection of electromagnetic waves, or dynamic sensor performance such as detection loss rate, object resolution and measurement inaccuracy, and "ghost" physical phenomena, so as to obtain high fidelity required by the sensor model. The full physical-level sensor model based on PilotD Automotive’s PlenRay physical ray technology currently boasts a simulation restoration rate of over 95%. 

dSPACE's AURELION (high-precision simulation of 3D scenes and physical sensors) is a flexible sensor simulation and visualization software solution. Based on physical rendering by a game engine, it simulates pixel-level raw data of camera sensors. AURELION's radar module uses ray tracing technology to simulate the signal-level raw data of ray-type sensors. Considering the impacts of specific materials on LiDAR, the output point cloud contains reflectivity values close to real calculations. For each ray, it provides realistic motion distortion effects and configurable time offset values.     

RisenLighten’s Qianxing Simulation Platform adds rich and realistic pedestrian models, and supports customization of micro trajectories of pedestrians and batch generation of pedestrians. Moreover, the platform also provides different high-fidelity pedestrian behavior style models, covering such scenarios as human-vehicle interaction, crossing, and diagonal crossing at intersections. It models three types of drivers (conservative, conventional and aggressive), and refines parameters by probability distribution, so as to diversify and randomize driving behaviors of vehicles in the environment.     

As a generative simulation model, NIO NSim can compare each trajectory deduced by NWM with the corresponding simulation results. Originally they could only be compared with the only trajectory in the real world. Yet adding NSim enables joint verification in tens of millions of worlds, providing more data for NWM training. This makes the output intelligent driving trajectory and experience safer, more reasonable, and more efficient.

数据闭环 8.png

In the field of autonomous driving, end-to-end solutions have a more urgent need of high-fidelity scenes. For the end-to-end system needs to cope with various complex scenarios, a lot of videos labeled with autonomous driving behaviors need to be put into autonomous driving training. With regard to 3D scene reconstruction, currently penetration and application of 3D Gaussian Splattering (3DGS) technology in the automotive industry accelerate. This is because 3DGS performs well in rendering speed, image quality, positioning accuracy, etc., fully making up for the shortcomings of NeRF. Meanwhile the reconstructed scene based on 3DGS can replicate the edge scenes (Corner Case) found in real intelligent driving. By dynamic scene generalization, it improves the ability of the end-to-end intelligent driving system to cope with corner cases. Examples include:     

51Sim innovatively integrates 3DGS into traditional graphics rendering engines through AI algorithms, making breakthroughs in realism. 51Sim fusion solution has high-quality and real-time rendering capabilities. The high-fidelity simulation scene not only improves the training quality for the autonomous driving system, but also significantly improves the authenticity of simulation, making it almost indistinguishable to naked eyes, greatly improving the confidence of simulation, and making up for shortfalls of 3DGS in details and generalization capabilities.

In addition, Li Auto also uses 3DGS for simulation scene reconstruction. Li Auto's intelligent driving solution consists of three systems, namely, end-to-end (fast system) + VLM (slow system) + world model. Wherein, the world model combines two technology paths: reconstruction and generation. It uses 3DGS technology to reconstruct the real data, and the generative model to offer new views. In scene reconstruction, the dynamic and static elements are separated, the static environment is reconstructed, and the dynamic objects are reconstructed and a new view is generated. After re-rendering the scene, a 3D physical world is formed, in which the dynamic assets can be edited and adjusted arbitrarily for partial generalization of the scene. The generative model features greater generalization ability, and allows weather, lighting, traffic flow and other conditions to be customized to generate new scenes that conform to real laws, which are used to evaluate the adaptability of the autonomous driving system in various conditions. 

数据闭环 9.png

数据闭环 10.png

In short, the scene constructed by combining reconstruction and generation creates a better virtual environment for learning and testing the capabilities of the autonomous driving system, enabling the system to have efficient closed-loop iteration capabilities and ensuring the safety and reliability of the system.

4. The rapid development of OEMs’ full-stack self-development capabilities prompts data closed-loop technology providers to keep improving their service capabilities.

The data closed loop is divided into the perception layer and the planning and control layer, both of which have an independent closed loop process. In both aspects, data closed loop technology providers have the ability to improve their service capabilities, for example:

In terms of perception, in the project development process, the version of the autonomous driving system will be released regularly, integrating and packaging all the contents such as perception, planning and control, communication, and middleware. Some intelligent driving solution providers such as Nullmax will release the perception part separately first, and then test it through automatic tools and testers, output specific reports, and evaluate the fixing of the problems at the early stage. If there are problems with the perception version, there is still time to continue to modify and test it. This can greatly avoid the upstream perception problems from affecting the entire system, and is more conducive to problem location and system improvement, greatly improving the efficiency of system release and project development. 

In terms of planning and control, in QCraft’s case, its self-developed “joint spatio-temporal planning algorithm” takes into account both space and time to plan the trajectory, and solves the driving path and speed in three dimensions simultaneously, rather than solve the path separately first and then solve the speed based on the path to form the trajectory. Upgrading "horizontal and vertical separation" to "horizontal and vertical combination" means that both path and speed curves will be used as variables in the optimization problem to obtain the optimal combination of the two. 

Data closed-loop technology providers generally provide complete data closed-loop solutions or separate data closed-loop products (i.e. modular tool services, e.g., annotation platform, replay tool and simulation tool) for OEMs and Tier1s. OEMs with great data governance capabilities often outsource tool modules that they are not good at, and integrate them into their own data processing platform systems; while OEMs with weak data governance capabilities will consider tightly coupled data closed-loop products or customized services, for example, FUGA, Freetech’s new-generation tightly coupled data closed-loop platform product, has gathered more than 8 million kilometers of real mass production data, and experience in algorithm closed-loop iteration of over 100 production models, achieving more than 100-fold algorithm iteration efficiency and managing over 3,000 sets of high-value scene data fragments per month. At present, FUGA has been deployed and applied in production vehicle projects of multiple leading OEMs, supporting daily test data problem analysis, and weekly data cleaning and statistical report analysis.

1 Overview of Autonomous Driving Data Closed Loop 
1.1 Evolution of Data Closed Loop 
1.2 Difficulties in Building An Autonomous Driving Data Closed Loop  
1.3 Solution Case 1 
1.4 Solution Case 2 
1.5 Autonomous Driving Data Closed Loop Industry Chain Map
1.6 Foundation of Data Closed Loop: Data Security
1.6.1 Status Quo of Automotive Data Security Standards 
1.6.2 Data Security Risks at All Autonomous Driving Levels 
1.6.3 Overview of Data Security Governance
1.6.4 Data Security Governance Cases

2 Data Collection 
2.1 Summary of Diverse Intelligent Driving Data Collection Modes  
2.1.1 Case 1: Production Vehicle  
2.1.2 Case 2: Collection Vehicle 
2.1.3 Case 3: Drone 
2.1.4 Case 4: Roadside Data 
2.1.5 Case 5: Simulation Synthesis 
2.2 Typical Data Collection/Data Compression Solutions
2.2.1 Case 1: TZTEK Technology
2.2.2 Case 2: Kunyi Electronics 
2.2.3 Case 3: EXCEEDDATA

3 Data Annotation 
Summary: Comparison between Intelligent Data Annotation Platforms (1)
Summary: Comparison between Intelligent Data Annotation Platforms (2) 

3.1 Haitian Ruisheng
3.1.1 DOTS-AD Data Platform
3.1.2 DOTS-LLM Service Platform 
3.2 MindFlow 
3.2.1 Autonomous driving AI data annotation solution
3.2.2 SEED Data Service Platform 
3.2.3 Data Security Solution
3.3 DataBaker Technology
3.3.1 Autonomous Driving 2D Image Annotation Platform
3.3.2 Autonomous Driving 3D Point Cloud Annotation Platform
3.3.3 Autonomous Driving 4D-BEV Annotation
3.3.4 AI Data Platform 
3.4 Molar Intelligence 
3.4.1 4D Annotation Tool V2.0
3.5 Magic Data 
3.5.1 Annotator Intelligent Annotation Tool 
3.6 Jinglianwen Technology
3.6.1 Data Annotation Service
3.7 Appen
3.7.1 MatrixGo? High-precision Data Annotation Platform
3.7.2 Foundation Model Intelligent Development Platform
3.8 Scale AI
3.8.1 Annotation and Fine-tuning Services

4 Data Processing 
4.1 Autonomous Driving Data Closed-Loop Processing Process
4.1.1 Case 1 of Autonomous Driving Data Closed-Loop Processing Process
4.1.2 Case 2 of Autonomous Driving Data Closed-Loop Processing Process
4.2 Classification and Grading of Autonomous Driving Data
4.2.1 Classification of Autonomous Driving Data
4.2.2 Grading of Autonomous Driving Data 
4.2.3 Case: Classification and Grading of Data from Some OEM
4.3 Data Compliance
4.3.1 Overview of Data Compliance  
4.3.2 List of Models That Meet Four Compliance Requirements for Automotive Data Security 
4.3.3 Data Compliance Solution Case 1
4.3.4 Data Compliance Solution Case 2 
4.4 Data Transmission
4.4.1 Case: EMQ
4.4.1.1 EMQ Product Series 
4.4.1.2 EMQ Vehicle-Cloud Integrated Data Closed-Loop Platform
4.4.1.3 EMQ vehicle-Cloud Cooperative Data Closed-Loop Application Case: Some OEM & Some Tier1
4.4.1.4 EMQ Vehicle-Cloud Flexible Data Collection Solution 
4.5 Intelligent Computing Center
4.5.1 Summary of Autonomous Driving Cloud Supercomputing Centers in China 
4.5.2 Intelligent Computing Case 1
4.5.3 Intelligent Computing Case 2
4.6 Data Closed-Loop Cloud Platform
4.6.1 Overview of Cloud Service-Enabled Data Closed-Loop
4.6.2 Case 1: Cloud Data Closed-Loop Tool SimCycle
4.6.3 Case 2: Huawei Cloud-Enabled Data Closed-Loop
4.6.4 Case 3: Jingwei Hirain’s Intelligent Driving Data Closed-Loop Cloud Platform OrienLink  
4.6.5 Case 4: 51SimOne Cloud-Native Simulation Platform 

5 Data Closed-Loop Technology Suppliers 

Summary: Comparison between Data Closed-Loop Technology Suppliers (1)
Summary: Comparison between Data Closed-Loop Technology Suppliers (2)
Summary: Comparison between Data Closed-Loop Technology Suppliers (3)
Summary: Comparison between Data Closed-Loop Technology Suppliers (4)
Summary: Comparison between Data Closed-Loop Technology Suppliers (5) 

5.1 JueFX Technology 
5.1.1 Data Closed-Loop Solution
5.1.2 Data Closed-Loop Solution (Urban NOA)
5.1.3 Data Closed-Loop Solution (Highway NOA)
5.1.4 BEV+Transformer Algorithm Mass Production Architecture Based on Data Closed-Loop  
5.1.5 Multimodal Automatic Annotation and Tool Chain 
5.1.6 Automatic Annotation Based on 4D Detection
5.2 QCraft 
5.2.1 Data Closed-Loop Capabilities 
5.2.2 Joint Spatio-Temporal Planning Technology 
5.2.3 Driven-by-QCraft New Mid-to-high-level Intelligent Driving Solution Based on Journey? 6 
5.2.4 Latest Dynamics  
5.3 Zhuoyu
5.3.1 Technology Route 
5.3.2 4D Vision-only Automatic Annotation Technology  
5.3.3 Intelligent Driving Chip Compute Optimization (1) - Model Optimization
5.3.4 Intelligent Driving Chip Compute Optimization (2) - Computing Acceleration (Heterogeneous Computing)
5.3.5 Intelligent Driving Chip Compute Optimization (2) - Computing Acceleration (Model Reasoning Optimization)
5.3.6 Intelligent Driving Chip Compute Optimization (2) - Computing Acceleration (Operator Optimization)
5.3.7 Intelligent Driving Chip Compute Optimization (3) - System Optimization 
5.4 Haomo.ai
5.4.1 Intelligent Driving Data Progress Table
5.4.2 HPilot Series
5.4.3 DriveGPT
5.5 SenseAuto 
5.5.1 New Embedded Model Piccolo2 
5.5.2 UniAD True End-to-end Perception and Decision Integrated Foundation Model
5.5.3 DriveAGI & SenseNova 5.0
5.5.4 ADNN Chip Heterogeneous Computing Platform
5.5.5 Deployment of Native Large Multimodal Model on Vehicles 
5.5.6 Latest Dynamics 
5.6 Momenta
5.6.1 Data Closed Loop
5.6.2 Mapless Intelligent Driving Algorithm and High-level Intelligent Driving Solution
5.6.3 Latest Dynamics
5.7 Freetech
5.7.1 Data Closed-Loop Platform Product - FUGA
5.8 Nullmax
5.8.1 One-stop Data-in-the-loop Platform
5.8.2 Multimodal End-to-end + Secure Brain-inspired Intelligence 
5.8.3 Full Automated Data Process 
5.8.4 Growable Algorithm Platform 
5.9 DeepRoute.ai
5.9.1 End-to-end
5.9.2 End-to-end High-level Intelligent Driving Platform DeepRoute IO
5.9.3 Deeproute-Driver
5.9.4 D-PRO
5.9.5 D-AIR
5.10 Bosch
5.10.1 Data Closed Loop
5.10.2 High-level Intelligent Driving 
5.11 EXCEEDDATA 
5.11.1 Vehicle-Cloud Data Base
5.11.2 Vehicle-Cloud Data Base - Flexible Data Collection
5.11.3 Vehicle-Cloud Data Base - Flexible Data Warehouse
5.11.4 Vehicle-Cloud Data Base - Application in Scenarios 
5.11.5 Vehicle-Cloud Integrated Tool Chain
5.11.5.1 Vehicle-Cloud Integrated Tool Chain (1)
5.11.5.2 Vehicle-Cloud Integrated Tool Chain (2)
5.11.5.3 Vehicle-Cloud Integrated Tool Chain (3)
5.11.5.4 Vehicle-Cloud Integrated Tool Chain (4)
5.11.5.5 Vehicle-Cloud Integrated Tool Chain (4)
5.11.5.6 Vehicle-Cloud Integrated Tool Chain (4)
5.11.5.7 Vehicle-Cloud Integrated Tool Chain (4)
5.11.6 Application Case of Vehicle-Cloud Integrated Tool Chain 
5.12 Yoocar 
5.12.1 Business Layout
5.12.2 Connection Solution 
5.12.3 Autonomous Driving Data Closed-Loop Tool Chain Platform
5.13 Mxnavi
5.13.1 Profile
5.13.2 Development History
5.13.3 Crowd-sourced Map Solution
5.13.4 Crowd-sourced Map System Architecture
5.13.5 Crowd-sourced Map System: Mapping Process
5.13.6 Crowd-sourced Map System: Map Elements
5.13.7 Crowd-sourced Map System: Intelligent Driving Function Scenarios
5.13.8 Crowd-sourced Automated Production System
5.13.9 Crowd-sourced Map System: Map Engine Architecture
5.13.10 Crowd-sourced Map System: Multi-source Fusion Location Solution Based on Visual Perception
5.13.11 Crowd-sourced Map System: Data Compliance Architecture
5.13.12 Partners
5.14 NavInfo
5.14.1 Data Compliance Closed Loop 
5.14.2 One Map Data Platform
5.14.3 Lightweight Map Product - HD Lite
5.14.4 Lightweight Version of NOP System - NOP Lite 
5.14.5 NI in Car Intelligent Integrated Solution 
5.14.6 AutoChips’ Chip Series
5.14.7 Pachira’s DeepThinking Foundation Model 
5.14.8 Sixents Technology’s Orion
5.14.9 "Vehicle-Road-Cloud Integration" Solution 
5.14.10 Latest Dynamics 

6 Data Closed Loop of Typical OEMs

Summary: Data Closed Loop Capabilities of OEMs (1)
Summary: Data Closed Loop Capabilities of OEMs (2) 

6.1 BYD
6.1.1 "Vehicle Intelligence" Strategy
6.1.2 Data Accumulation Capabilities
6.1.3 Data Closed Loop - Algorithm Capabilities 
6.1.4 Data Closed Loop - Computing Capabilities  
6.1.5 "Eyes of God" High-level Intelligent Driving System 
6.2 Chery
6.2.1 ZDrive.ai - Profile
6.2.2 ZDrive.ai - Data Closed-Loop Capabilities 
6.2.3 ZDrive.ai - Zhuojie Joint Innovation Center
6.2.4 ZDrive.ai - Latest Dynamics  
6.3 Great Wall Motor 
6.3.1 Intelligent Driving System
6.3.2 SEE End-to-End Intelligent Driving Foundation Model
6.3.3 Supercomputing Center
6.4 Geely
6.4.1 Zeekr Haohan Intelligent Driving 2.0 All-Scenario End-to-End 
6.4.2 SuperVision Solution of Zeekr NZP
6.4.3 Xingrui Intelligent Computing Center
6.4.4 Intelligent Driving Cloud Data Factory
6.4.5 Intelligent Driving Closed-Loop System
6.4.6 ROBO Galaxy Tool Chain Solution Process Solution
6.4.7 Data Production Modes 
6.4.8 Self-developed Algorithm Underlying Software Abstraction
6.4.9 Intelligent Driving Self-development SOA Design
6.4.10 Fully Self-developed Cockpit Operating System
6.4.11 Global Platform Operation System
6.5 Li Auto 
6.5.1 Large Multimodal Cognitive Model
6.5.2 Intelligent Driving End-to-end Solution
6.5.3 Algorithm Architecture of Intelligent Driving 3.0
6.5.4 Mapless NOA 
6.5.5 Intelligent Laboratory
6.5.6 Progress in Self-developed Chips 
6.6 Xpeng 
6.6.1 Adjustment of Organizational Structure of Autonomous Driving Department
6.6.2 End-to-end System  
6.6.3 Evolution of XNGP
6.6.4 XNGP’s Closed-Loop Data Iteration System 
6.6.5 Self-developed Chips
6.6.6 Fuyao Intelligent Computing Center
6.7 NIO
6.7.1 Intelligent Driving World Model
6.7.2 New Intelligent Driving Architecture
6.7.3 Swarm Intelligence
6.7.4 Self-developed Chips

7 Data Closed Loop Development Trends
7.1 Trend 1
7.2 Trend 2
7.3 Trend 3
7.4 Trend 4
7.5 Trend 5
7.6 Trend 6
7.7 Trend 7
7.8 Trend 8
7.9 Trend 9
 

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号