Automotive AI Agent Product Development and Commercialization Research Report, 2024
  • Aug.2024
  • Hard Copy
  • USD $4,400
  • Pages:223
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: GX016
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models?

According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development path:

AGENT 商业化 1.png

Limited by interaction modes and tool usage capabilities, popular foundation models in 2023 can only reach L2 (Reasoners) at most. In contrast, developing the automotive AI system by building automotive agents is a more appropriate goal: Agent improves weak links of application of foundation models in scenarios by way of calling active intelligent features and multiple tools/foundation models, further improving cockpit intelligence level.

Agent is the endorser of emotional cockpits

"Emotional cockpit" has been nothing new for multiple years, but actually realizing it still starts with the introduction of foundation models in vehicles. Under specific triggering conditions, voice assistant chats with the user through preset emotional corpus, but it cannot adapt to human dialogue logic in real chat scenarios. After being applied to vehicles, Agent integrated with multiple foundation model bases can recognize the environment more accurately, and more tool library interfaces further enhances its generalization capability to cope with chat and Q&A in diversified scenarios, truly realizing the warm companionship of the "cockpit endorser".   

AGENT 商业化 2.png 

The design of mainstream emotional interaction scenarios focuses on emotion recognition, user memory, and behavior arrangement. Some OEMs and Tier1s have also launched technologies or products to enhance the emotional value of Agents: 

AGENT 商业化 3.png 

For example, Xiaoai Tongxue’s "emotional dialogue system" is built in three steps:

AGENT 商业化 4.png

The mixed strategy dredging model is composed of three important components: mental state-enhanced encoder, mixed strategy learning module, and multi-factor-aware decoder.

AGENT 商业化 5.png

The Institute of Digital Games at University of Malta proposes the Affectively Framework, establishes an emotional model, and adopts behavior reward and affective reward mechanisms in the training process to help Agents better understand human emotions and interact with humans more naturally.

AGENT 商业化 6.png

Sore points that need to be solved to improve user experience

Imagine that an intelligent cockpit can not only understand and execute instructions given by the car owner, but also predict the owner's needs, just like a thoughtful personal assistant. Will this make car owners more excited? Compared to buying a traditional car and having to explore each function on one’s own, everyone wants a cockpit "endorser" which can help manage all cockpit functions as they just say a few words. Agent is a time-saving and trouble-free solution.  

Currently most Agents introduced in vehicles still serve as an assistant and a companion listing functions for specific scenarios. Yet compared with foundation models, Agents feature greater potential, motivated autonomy, and outstanding tool-using capabilities, more fit with the label of "active intelligence", and can even make up for the limitations of foundation models in practical applications.  

AGENT 商业化 7.png

There is however still a long way to go in technology development to make automotive agents truly "active and intelligent" and meet users' experience value. Agent needs to be more precise in active perception, data processing, state recognition, etc., accurately understand the environment, judge real needs of people in the car, and then adopt corresponding strategies. Wherein, one of challenges lies in Agent's accurate judgment of user needs. Compared with passive interaction in normal circumstances, active intention recognition lacks voice commands. In the process of environment/personnel/vehicle state recognition, it may not be possible to obtain a description that is extremely close to the current scenario through vector feature matching, and the preset solution may not satisfy the real intentions of people in the car.

At present, most recommended functions are just to execute preset instructions. This limits "active and intelligent" capabilities of Agent and leads to frequent sore points in the reasoning process. For example, if Agent fails to accurately understand the current scenario, it may not make recommendations as expected, for instance, recommending music or navigation at a wrong time. The final result is to affect user experience and make the Agent become a "guessing machine" to users.  

AGENT 商业化 8.png

In addition, Agent also has shortcomings in perception when receiving voice commands. According to ResearchInChina’s incomplete statistics on sore points in automotive agent use cases of some car owners, the most frequent sore points are wake-up failure, recognition error, and false wake-up. 

Among the 120 cases, wake-up failure, recognition error, and false wake-up are mentioned 19, 18, and 17 times respectively, namely, accounting for 16%, 15%, and 14%. Other sore points also include unavailability of see-and-speak, semantic clarification and continuous commands, inability to recognize dialects, and delayed response, totaling 89 sore points in voice link, or 74.2% of the total in this statistical survey.

Furthermore, a range of problems caused by unreasonable Agent architecture/scenario design also include irrational scenario triggering conditions, secondary wake-up of foundation models, failure of long/short-term memory, and recommended actions made autonomously according to owners' habits but failing to meet expectations, which respectively reflect limitations of Agent in scenario setting, architecture deployment, memory module, and reflection module.   

In summary, sore points of users are concentrated in the perception and reasoning links:
Perception: wake-up failure, false wake-up, recognition error, unavailability of see-and-speak, delayed response, etc.
Reasoning: object recognition error, autonomous recommendation failing to meet user expectations, etc.

Quick-response multi-agent framework

To enable all the functions of the "endorser" in cockpit, it is very critical to design the service framework of Agent in diversified scenarios. Agent framework is relatively flexible in construction. The simplest "receiver + executer" architecture can be used, or a more complex multi-agent architecture can be built. Its design principle is very simple: as long as it can solve user problems in a specific scenario, it is a good framework design. As a qualified "cockpit endorser", automotive Agent not only needs to act as an independent thinker, make decisions and solve problems on its own, but also quickly and freely adopts human behavior patterns, acting as a human.      

A typical example is NIO Nomi. It uses a multi-agent architecture, calling different tools in different scenarios, and using multiple agents with different functions to perform specific duties and jointly complete the process of understanding needs, making decisions, executing tasks, and reflecting on iterations. The multi-agent architecture allows Nomi to not only make quick response, but also react more naturally like a human. Its seamless integration with other vehicle functions brings smoother experiences.     

Compared with single-agent systems, multi-agent systems are more suitable for executing complex instructions. They are like a small community in which each "agent" has its own tasks, but can cooperate to complete more complex tasks. For example, one agent is responsible for understanding your instructions, another is responsible for making a decision, and there are special agents to perform tasks. This design makes automotive AI Agent systems more flexible and allows them to handle more diverse tasks. For example, the Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia proposed a multi-agent system that uses both collaboration agents and execution agents:   

The entire Agent framework is divided into 6 modules, namely, Understanding & Interaction, Reasoning, Tool Use, Multi-Agent Collaboration, Reflection, and Alignment. It embraces mainstream Agent design patterns, and covers the entire process from active perception, reasoning and decision, tool calling to generation and execution, reflection and iteration, and alignment with human values. This framework features a multi-agent system where different Agents can play different roles (distribution/decision/actuation) in the entire process, making best use of each Agent to improve task execution efficiency.  

In addition, in diversified scenarios, Agent deployment methods and tool calling capabilities also affect whether or not user needs can be quickly and accurately executed. Take NIO Nomi as an example:

Nomi Agents are deployed at the end and cloud sides. End-side model and NomiGPT are deployed at the end and cloud sides, respectively. Deeply integrated with SkyOS, the end-side model can call atomic capabilities in time and schedule resources (data, vehicle control hardware/software, etc.) across domains to speed up response. NomiGPT on the cloud connects more cloud tool resource interfaces to further enhance Nomi Agents’ capability of calling tools. Nomi Agents’ architecture is arranged in SkyOS middleware layer. Combining with SkyOS, it makes the process of calling atomic APIs, hardware/software and data more natural, coordinated, and faster.     

1 Overview of Automotive AI Agent
1.1 Definition of Agent
1.2 Development History of Agent
1.3 Foundation Models Regain Vitality Using the Agent Concept 
1.4 Differences between Foundation Models, Agents, and AIGC
1.5 Automotive AI Agent Product Definition
1.6 Automotive AI Agent based on Multi-agent System: Module Design
1.6 Automotive AI Agent based on Multi-agent System: Component Functions
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (1)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (2)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (3)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (4)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (5)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (6)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (7)
1.6 Automotive AI Agent based on Multi-agent System: Component Characteristics (8)
1.7 Automotive AI Agent Reference Architecture (by Functional Module and Component)
1.7 Automotive AI Agent Reference Architecture (by Deployment Level)
1.8 Agent Architecture Case (1): Original Diagram of NIO (Nomi) Architecture
1.8 Agent Architecture Case (1): Original Diagram of NIO (Nomi) Deployment
1.8 Agent Architecture Case (1): NIO (Nomi) Module Design
1.8 Agent Architecture Case (1): NIO (Nomi) Module Design - Multimodal Perception
1.8 Agent Architecture Case (1): NIO (Nomi) Module Design - Command Distribution
1.8 Agent Architecture Case (1): NIO (Nomi) Module Design - Scenario Customization and Creation Process
1.8 Agent Architecture Case (1): Highlights of NIO (Nomi) (1)
1.8 Agent Architecture Case (1): Highlights of NIO (Nomi) (2)
1.8 Agent Architecture Case (1): Highlights of NIO (Nomi) (3)
1.8 Agent Architecture Case (2): Original Diagram of Li Auto (Lixiang Tongxue) Architecture
1.8 Agent Architecture Case (2): Li Auto (Lixiang Tongxue) Module Design
1.8 Agent Architecture Case (2): Li Auto (Lixiang Tongxue) Supporting Facilities - Data/Training Platform
1.8 Agent Architecture Case (2): Li Auto (Lixiang Tongxue) Supporting Facilities - Reasoning Engine
1.8 Agent Architecture Case (3): Original Diagram of Xiaomi (Xiaoai Tongxue) Architecture 
1.8 Agent Architecture Case (3): Xiaomi (Xiaoai Tongxue) Module Design
1.8 Agent Architecture Case (4): Zeekr Agent Module Design
1.8 Agent Architecture Case (5): Original Diagram of Neta Agent Architecture Deployment
1.8 Agent Architecture Case (5): Neta Agent Module Design
1.8 Agent Architecture Case (6): Original Diagram of BAIC Agent Architecture Deployment
1.8 Agent Architecture Case (6): BAIC Agent Module Design
1.8 Agent Architecture Case (7): Huawei (Pangu Agent) Module Design
1.8 Agent Architecture Case (8): Original Diagram of AISpeech Agent Architecture Deployment
1.8 Agent Architecture Case (8): AISpeech Agent Module Design
1.8 Agent Architecture Case (9): Original Diagram of Lenovo Agent Architecture Deployment
1.8 Agent Architecture Case (10): Original Diagram of Zhipu Agent Architecture Deployment
1.8 Agent Architecture Case (10): Zhipu Agent Module Design
1.8 Agent Architecture Case (11): Original Diagram of Tinnove Agent Architecture Deployment
1.8 Agent Architecture Case (11): Tinnove Agent Module Design
1.9 Agent Architecture Design Process: Framework Selection
1.9 Agent Architecture Design Process: Tool Calling Method
1.10 Comparison of Automotive AI Agent Architecture

2 Key Issues in Development of Automotive AI Agent Products - User Sore Points and Technical Difficulties
2.1 Classification of Automotive AI Agent Scenario: Typical Commands in Different Scenarios
2.1 Classification of Automotive AI Agent Scenario: Case (1) NIO
2.1 Classification of Automotive AI Agent Scenario: Case (2) Li Auto
2.1 Classification of Automotive AI Agent Scenario: Case (3) Xiaomi
2.2 Automotive AI Agent Scenario Design Case (1) Q&A Scenario
2.2 Automotive AI Agent Scenario Design Case (2) Q&A Scenario
2.2 Automotive AI Agent Scenario Design Case (3) Mobility Scenario
2.2 Automotive AI Agent Scenario Design Case (4) Chat Scenario
2.2 Automotive AI Agent Scenario Design Case (5) Chat Scenario
2.2 Automotive AI Agent Scenario Design Case (6) Chat Scenario
2.2 Automotive AI Agent Scenario Design Case (7) Q&A/Office Scenario
2.3 User Sore Points in Different Agent Usage Scenarios: Summary
2.4 User Sore Points (1): Vehicle Control Scenario
2.4 User Sore Points (2): Mobility Scenario
2.4 User Sore Points (3): Q&An Scenario
2.4 User Sore Points (4): Entertainment Scenario
2.5 Agent Technical Difficulties 
2.6 Agent Technology Case: Intent Recognition (Case 1)
2.6 Agent Technology Case: Intent Recognition (Case 2)
2.6 Agent Technology Case: Intent Recognition (Case 3)
2.6 Agent Technology Case: Intent Recognition (Case 4)
2.6 Agent Technology Case: Reasoning Acceleration (Case 1)
2.6 Agent Technology Case: Reasoning Acceleration (Case 2)
2.6 Agent Technology Case: Reasoning Acceleration (Case 3)
2.6 Agent Technology Case: Streaming Voice (Case 1)
2.6 Agent Technology Case: Streaming Voice (Case 2)
2.6 Agent Technology Case: Streaming Voice (Case 3)
2.6 Agent Technology Case: Emotional Interaction (Case 1)
2.6 Agent Technology Case: Emotional Interaction (Case 2)
2.6 Agent Technology Case: Emotional Interaction (Case 3)
2.7 Agent Technology Trends (1): Two Keys to Achieving Active Intelligence
2.7 Agent Technology Trends (2):
2.7 Agent Technology Trends (3): Two Mainstream Design Methods for Emotional Anthropomorphism

3 OEMs’ AI Agent Investment, Development, and Operation
3.1 Comparison of Automotive AI Agent Development Support
3.2 OEMs’ Planning for Automotive AI Agents
3.3 Comparison between Three Automotive AI Agent Development Modes: Advantages/Disadvantages 
3.3 Comparison between Three Automotive AI Agent Development Modes: Cost
3.4 Position Setting of OEMs’ AI Agent Team
3.4 Case of OEMs’ AI Agent Team Position Setting (1): Positions Recruited by Chery AI Agent Team 
3.4 Case of OEMs’ AI Agent Team Position Setting (2): Positions Recruited by Geely AI Agent Team 
3.4 Case of OEMs’ AI Agent Team Position Setting (3): Positions Recruited by Li Auto AI Agent Team 
3.4 Case of OEMs’ AI Agent Team Position Setting (4): Positions Recruited by NIO AI Agent Team 
3.4 Case of OEMs’ AI Agent Team Position Setting (5): Positions Recruited by Xiaomi AI Agent Team   
3.5 AI Agent Development Cycle and Operation Mode
3.6 AI Agent Business: OEMs’ Profit Model 
3.6 AI Agent Business: Suppliers’ Profit Model 
3.6 AI Agent Business: Suppliers’ Charging Standards 
3.7 Commercial Development Trends of Automotive AI Agents (1)
3.7 Commercial Development Trends of Automotive AI Agents (2)

4 Automotive AI Agent Suppliers and Their Supply Relationships  
4.1 Cockpit Base Foundation Model: Model Configurations
4.1 Cockpit Base Foundation Model: Selection Reference Factors
4.2 Cockpit Base Foundation Model Suppliers (1)
4.2 Cockpit Base Foundation Model Suppliers (2)
4.2 Cockpit Base Foundation Model Suppliers (3)
4.2 Cockpit Base Foundation Model Suppliers (4)
4.2 Cockpit Base Foundation Model Suppliers (5)
4.2 Cockpit Base Foundation Model Suppliers (6)
4.2 Cockpit Base Foundation Model Suppliers (7)
4.2 Cockpit Base Foundation Model Suppliers (8)
4.2 Cockpit Base Foundation Model Suppliers (9)
4.2 Cockpit Base Foundation Model Suppliers (10) 
4.3 Industry Chain of Vector Database Suppliers 
4.4 Comparison between Vector Database Products: Chinese Vector Databases
4.4 Comparison between Vector Database Products: Foreign Vector Databases 
4.5 Vector Database Supplier Cases (1)
4.5 Vector Database Supplier Cases (2)
4.5 Vector Database Supplier Cases (3)
4.5 Vector Database Supplier Cases (4)
4.5 Vector Database Supplier Cases (5)
4.5 Vector Database Supplier Cases (6)
4.5 Vector Database Supplier Cases (7)
4.5 Vector Database Supplier Cases (8)
4.6 Comparison between Voice ASR Module Suppliers 
4.7 ASR Module Supplier Cases (1)
4.7 ASR Module Supplier Cases (2)
4.7 ASR Module Supplier Cases (3)
4.7 ASR Module Supplier Cases (4)
4.7 ASR Module Supplier Cases (5)
4.7 ASR Module Supplier Cases (6)
4.7 ASR Module Supplier Cases (7)
4.7 ASR Module Supplier Cases (8)
4.7 ASR Module Supplier Cases (9)
4.8 Cockpit Data Collection Sensors: Mainstream Configurations/Data Collection Regulations
4.9 Sensor Data Processing Cases (1)
4.9 Sensor Data Processing Cases (2)
4.9 Sensor Data Processing Cases (3)
4.9 Sensor Data Processing Cases (4) 
 

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号