Research Report on the Application of AI in Automotive Cockpits, 2025
  • Mar.2025
  • Hard Copy
  • USD $4,500
  • Pages:310
  • Single User License
    (PDF Unprintable)       
  • USD $4,300
  • Code: GX017
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,400
  • Hard Copy + Single User License
  • USD $4,700
      

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution"

From the early 2000s, when voice recognition and facial monitoring functions were first integrated into vehicles, to the rise of the "large model integration" trend in 2023, and further to 2025 when automakers widely adopt the reasoning model DeepSeek-R1, the application of AI in cockpits has evolved through three key phases:

Pre-large model era: Cockpits transitioned from mechanical to electronic and then to intelligent systems, integrating small AI models for scenarios like facial and voice recognition.

Post-large model era: AI applications expanded in scope and quantity, with significant improvements in effectiveness, though accuracy and adaptability remained inconsistent.

Multimodal large language models (LLMs) and reasoning models: Cockpits advanced from basic intelligence to a stage of "deep interaction and self-evolution."

AI座舱应用1.png

ResearchInChina has sorted out the application scenarios of AI in different cockpit component systems, some of which are shown in the table:

AI座舱应用2-1.png

AI座舱应用2-2.png

Cockpit AI Development Trend 1: Deep Interaction

Deep interaction is reflected in "linkage interaction", "multi-modal interaction", "personalized interaction", "active interaction" and "precise interaction".

AI座舱应用3.png

Taking "precise interaction" as an example, the inference large model not only improves the accuracy of voice interaction, especially the accuracy of continuous recognition, but also through dynamic understanding of context, combined with sensor fusion processing data, relying on multi-task learning architecture to synchronously process navigation, music and other composite requests, and the response speed is increased by 40% compared with traditional solutions. It is expected that in 2025, after the large-scale loading of inference models (such as DeepSeek-R1), end-side inference capabilities can make the automatic speech recognition process faster and further improve the accuracy.

Taking "multi-modal interaction" as an example, using the multi-source data processing capabilities of large models, a cross-modal collaborative intelligent interaction system can be built. Through the deep integration of 3D cameras and microphone arrays, the system can simultaneously analyze gesture commands, voice semantics and environmental characteristics, and complete multi-modal intent understanding in a short time, which is 60% faster than traditional solutions. Based on the cross-modal alignment model, gesture control and voice commands can be coordinated to further reduce the misoperation rate in complex driving scenarios. It is expected that in 2025-2026, multi-modal data fusion processing capabilities will become standard in the new generation of cockpits. Typical scenarios include:

Gesture control: Drivers can conveniently control functions such as windows, sunroof, volume, navigation, etc. through simple gestures, such as waving, pointing, etc., without distracting their driving attention.
Facial recognition and personalization: The system can automatically identify the driver through facial recognition technology, and automatically adjust the settings of seats, rearview mirrors, air conditioners, music, etc. according to their personal preferences, to achieve a personalized experience of "get in the car and enjoy".
Eye tracking and attention monitoring: Through eye tracking technology, the system can monitor the driver's gaze direction and attention state, detect risk behaviors such as fatigue driving and inattention in a timely manner, and provide early warning prompts to improve driving safety.
Emotional recognition and emotional interaction: AI systems can even identify the driver's emotional state, such as judging whether the driver is anxious, tired or excited through facial expressions, voice tone, etc., and adjust the ambient lighting, music, air conditioning, etc. in the car accordingly to provide more intimate emotional services.

Cockpit AI Development Trend 2: self-evolution

In 2025, the cockpit agent will become the medium for users to interact with the cockpit, and one of its salient features is "self-evolution", reflected in "long-term memory", "feedback learning", and "active cognition".

AI座舱应用6.png

“Long-term memory”, “feedback learning”, and “active cognition” are gradual processes. AI constructs user portraits through voice communication, facial recognition, behavior analysis and other data to achieve “thousands of people and thousands of faces” services. This function uses reinforcement learning and reasoning related technology implementation, and the system relies on data closed-loop continuous learning of user behavior. Under the reinforcement learning mechanism, each user feedback becomes the key basis for optimizing the recommendation results.

With the continuous accumulation of data, the large model can more quickly discover the law of user interest point transfer, and can anticipate user requests in advance. It is expected that in the next two years, with the help of more advanced reinforcement learning algorithms and efficient reasoning architecture, the system will increase the mining speed of users’ new areas of interest by 50%, and the accuracy of recommended results will be further improved. Such as:
BMW’s cockpit system remembers driver seat preferences, frequented locations, and automatically dims ambient lights to relieve anxiety on rainy days;
Mercedes-Benz’s voice assistant can recommend restaurants based on the user’s schedule and reserve charging stations in advance.

BMW Intelligent Voice Assistant 2.0 is based on Amazon’s Large Language Model (LLM) and combines the roles of personal assistant, vehicle expert and accompanying occupant to generate customized suggestions by analyzing the driver’s daily route, music preferences and even seat adjustment habits. For example, if the system detects that the driver often stops at a coffee shop every Monday morning, it will proactively prompt in a similar situation: “Are you going to a nearby Starbucks?” In addition, the system can also adjust recommendations based on weather or traffic conditions, such as recommending indoor parking on rainy days; when the user says “Hello BMW, take me home”, “Hello BMW, help me find a restaurant”, the personal assistant can quickly plan a route and recommend a restaurant.

AI座舱应用7.png

Cockpit AI Development Trend 3: Symbiosis of Large and Small Models

The large model has been on the bus for nearly two years, but the phenomenon of the large model “completely replacing” the small model has not occurred. With its lightweight and low power consumption characteristics, the small model performs well in end-side task scenarios with high real-time requirements and relatively small data processing. For example, in intelligent voice interaction, the small model can quickly parse commands such as “turn on the air conditioner” or “next song” to provide instant responses. Similarly, in gesture recognition, the small model realizes low-latency operation through local computing, avoiding the time lag of cloud transmission. This efficiency makes the small model the key to improving the user interaction experience.

In practical applications, the two complement each other; the large model is responsible for complex calculations in the background (such as path planning), while the small model focuses on the fast response of the front desk (such as voice control), jointly building an efficient and intelligent cockpit ecosystem. Especially inspired by DeepSeek’s distillation technology, it is expected that after 2025, the end-side small models obtained by distilling high-performance large models will be mass-produced on a certain scale.”

Taking NIO as an example, it runs its AI application in a two-wheel drive manner for large and small models as a whole, with a focus on large models, but it does not ignore the application of small models.

Relevant Definitions

1 Application Scenarios of AI in Automotive Cockpits
1.1 Current Status of AI Applications in Cockpits
Characteristics of the New Generation Cockpit after AI Integration
Application Scenarios of AI in Cockpits: Current Status

1.2 Scenario 1: Speech Recognition
AI Large Model Integration into Speech Recognition Development Roadmap
Sub-Scenario 1: Voiceprint Recognition
Sub-Scenario 2: External Vehicle Speech Recognition
Speech Interaction Suppliers Integrating AI Large Models

1.3 Scenario 2: Multimodal Interaction
AI Large Model Integration into Facial Recognition Development Roadmap
Small Model Integration in Lip Movement Recognition Scenarios
Small Model Integration in Iris Recognition Scenarios
Vehicle Models with Iris Recognition Function

1.4 Scenario 3: IMS
Functions Implemented by In-cabin Monitoring Systems
Development of AI in In-cabin Monitoring Scenarios
Examples of AI Algorithms in In-cabin Monitoring
AI Technology Applications in In-cabin Monitoring Chip Suppliers
AI Technology Applications in In-cabin Monitoring: Algorithm Suppliers

1.5 Scenario 4: HUD
Applications of AI algorithms in HUDs

1.6 Scenario 5: Radar Detection
AI algorithms in Radar (1)
AI algorithms in Radar (2)

2 Cockpit Agents Based on Scenarios
2.1 Overview of Cockpit Agents
Introduction to AI Agents
Classification of Cockpit AI agents
Evolution Direction of Cockpit AI agents: Cognition-driven
Process of AI Agents Landing in Cockpits: From Large Models to AIOS
Program for AI Agents Landing in Cockpits based on LLMs
Interaction Mechanism of Cockpit AI Agents
Classification of Application Scenarios for Cockpit AI Agents (1)
Classification of Application Scenarios for Cockpit AI Agents (2)
Evolution Direction of AI Agents: Active Interaction
Evolution Direction of AI Agents: Reflective Optimization

2.2 Application Background of Cockpit Agents
Application Background (1): Multimodal Interaction Spurs Agent Landing
Application Background (2): Scenario Creation as an Important Approach for Agent Evolution
Application Background (3): Agent Scenarios Drive Demand for High-Performance Computing Chips
Application Background (4): Performance of Large Models Determines the Upper Limit of Agents
Application Background (5): Parallel Development of Large and Small Models


3 Cockpit AI Application Cases of Suppliers 
Overview of Cockpit AI Large Model Functions of Suppliers
3.1 Huawei
Huawei's AI Application Planning in Cockpits
Function Construction of Huawei HarmonySpace Intelligent Cockpit
Huawei Xiaoyi's Voice Capabilities based on Large Models
AI Functions of Huawei Harmony OS
Two Implementation Methods of Huawei Harmony OS "See and Say"
Case: Xiaoyi Assistant Interaction Scenario in Harmony OS vehicles

3.2 Tencent
Tencent's Intelligent Cockpit Large Model Framework
Enhancing Interaction Functions with Tencent's Large Model
Applications of Tencent's Intelligent Cockpit Large Model (1)
Applications of Tencent's Intelligent Cockpit Large Model (2)
Interaction Features of Tencent's Cockpit (1)
Interaction Features of Tencent's Cockpit (2)

3.3 Ali
Alibaba Qwen Large Model and OS Integration
Ali's AI-based Voice Scenario
Ali NUI End-cloud Integrated Platform Architecture
Alibaba's E2E Large Model Combined with Cloud Computing
Functional Application of Qwen Large Model End Side on IVI
Qwen Large Model Mounted on IVI

3.4 Baidu
Baidu Smart Cabin is Built based on ERNIE Bot Model
Baidu AI Native Operating System

3.5 ByteDance (Volcano Engine)
Volcano Engine Cockpit Function Highlights

3.6 Zhipu AI 
Cockpit Design Architecture Based on AI Large Model
Scenario Design of AI Large Model
Design of AI Large Model for Cockpit Interaction Pain Points

3.7 SenseTime
Six Features of SenseTime Smart Cabin
Influence of SenseTime SenseNova on Cockpit Interaction
SenseTime Multimodal Processing Capability Framework
Multimodal Interactive Application Case of SenseAuto 
In-cabin Monitoring Products of SenseAuto

3.8 iFLYTEK
Spark Large Model Function List
Development History of iFLYTEK Spark Model
Upgrade Content of iFLYTEK Spark Model 4.0 
Spark Model Core Capability
Large Model Deployment Solution
Car Assistant based on Spark Model
Spark Voice Model
Spark Large Model Function List
How does iFLYTEK's Spark Cockpit Integrate into AI Services?
Application Technology of Spark Large Model
Full-stack Intelligent Interaction Technology
Smart Car AI Algorithm Chip Compatibility
Characteristics of Multimode Perception System
Multimodal Interaction

3.9 AISpeech
Large Model Details
DUI 2.0 products based on DFM  
DFM "1 + N" layout
AISpeech Fusion Large Model Solution
Development History AI Speech Technology
Multi-modal Interaction Solution of AI Speech Technology
Features of AISpeech Car Voice Assistant

3.10 Unisound AI Technology Co, Ltd
Vehicle Large Model solution
Large Model Details 
Application of Shanhai Large Model in Cockpit
Vehicle Voice Solution Business Model
Voice Basic Technology

3.11 Upjohn technology
Voice Large Model Solution
 Intelligent Cabin Large Model (Hybrid Architecture + Fusion Open)
Vehicle Voice Solution 

3.12 ThunderSoft
Large Model Layout
Rubik Model in Cockpit Interaction

3.13 Z-One
 AI Service Structure is Built according to 4 Levels
AI's Changes to Hardware Layer
AI's Changes to the Software Layer
AI Changes to Cloud/Vehicle Deployment

3.14 Desay SV 
Four Main Application Scenarios of Cockpit Large Model
Multimodal Interaction of Cockpit Large Model
Multimode Interaction of Cockpit Large Model: Smart Solution 2.0
Research History of Vehicle Voice
Voice Large Model Solution Overview
Solutions to Pain Points in Voice Industry 
Large Model Voice Future Planning

3.15 TINNOVE
AI Models Empower Three Levels of Cockpit
Four Stages of Smart Cockpit Planning
AI Cockpit Architecture Design
AI Large Model Service Form
AI Large Model Application Scenario
Combination of TTI OS and Digital Human

3.16 PATEO
Voice Interaction Technology
PATEO AI Voice Capability Configuration 

3.17 Cerence
Automotive Language Large Model Solution
Voice Assistant and Large Model Integration Solution
 Voice Assistant
 Vehicle-Outside Voice Interaction
Core Technology of Speech Based on Large Model

3.18 MediaTek
MediaTek Cockpit Interaction Features

3.19 Minieye 
I-CS Intelligent Cockpit Adopts CV Technology

3.20 oToBrite
Vision AI Driver Monitoring System

3.21 Smart Eye
AI Scenario of Driver Monitoring System
LLM Powers Smart Eye DMS/OMS System


4 Cockpit AI Application Cases of OEMs
Overview of OEM Large Model Applications
4.1 NIO
Multimodal Perception Large Model: NOMI GPT
Multimodal Interaction Applications based on NOMI GPT
LeDao intelligent Cockpit Interaction Scenarios based on NOMI GPT

4.2 Li Auto 
Lixiang Tongxue: Building Multiple Scenarios
Lixiang Tongxue: Thinking Chain Explainability
Mind GPT: Building AI Agent as Core of Large Model
Mind GPT: Multimodal Perception
Large Model Training Platform Adopts 4D Parallel Mode
Cooperation with NVIDIA on Inference Engine
Lixiang Tongxue's Multimodal Interaction Case in MEGA Ultra

4.3 XPeng
Intelligent Cockpit Solution: XOS Tianji system

4.4 Xiaomi
Xiaomi Vehicle Large Model: MiLM
Voice Large Model Gets on 
XiaoAi Covers the Scene through Voice Commands
Voice Task Analysis and Execution Process
XiaoAi Accurately Match through RAG
Xiaomi HyperOS Launches DeepSeek R1 Model
Mi SU7 Self-developed Sound Model

4.5 Leapmotor
Large Model 1.0: Tongyi Large Model
Large Model 2.0: Enhancing Cockpit Large Model Capabilities with DeepSeek R1

4.6 BYD
Functional Scenario of BYD Xuanji AI Large Model in Cockpit
Case of BYD Xuanji AI Large Model in Cockpit

4.7 SAIC
Application of IM Large Model in Vehicle Voice
IM Large Model Application Case
IM Large Model Builds Active Perception Scenario

4.8 GAC
Intelligent Cockpit Solution
Cockpit Application of GAC AI Large Model
Application of DeepSeek in GAC Cockpit

4.9 BAIC
Three Development Stages of BAIC Large Model
Large Model Specific Scenario 
BAIC Agent Platform Architecture
Planning Ideas for Large Model Products
AI Application Case

4.10 Chang'an
Improvement of Cockpit Interaction by Changan Xinghai Large Model
Changan Integrates AI into SOA Architecture Layer
Chang'an's Planning of “Digital Intelligence" Cockpit
Changan Realizes Automatic Switching of Cockpit Scenarios and Functions
AI Application Case

4.11 Great Wall
Cockpit Application of Great Wall Large Model

4.12 Chery
Chery LION AI base
EXEED STERRA ET is Equipped with Lion AI Large Model

4.13 Geely
Geely Xingrui AI Large Model
Geely Xingrui AI Large Model Access DeepSeek
Smart Cockpit Solution
Flyme Auto Voice Interaction Capability
ZEEKR Smart Cockpit Solution: ZEEKR AI OS
Two Forms of Large Model Cockpit Application
Large Model Installation Situation
Large Model Installation Situation: Geely Galaxy E8
Large Model Installation Situation: ZEEKR 7X
ZEEKR Cockpit Agent Scenario: Life Service
ZEEKR Cockpit Agent Scenario: Multimodal Perception

4.14 Jianghuai
4 Applications of Jianghuai AI Cockpit
Jianghuai AI Large Model Installation Case

4.15 BMW
BMW Intelligent Voice Assistant 2.0 based on LLM

4.16 Mercedes Benz
MB. OS Digital World - Personalized Services with MBUX Virtual Assistant
Cockpit Large Model Cooperation Dynamics

4.17 VW
Upgrade Dynamics of Voice Interaction System
Volkswagen and Baidu Cooperate on Voice Model

5 Trends and Technical Resources of AI Applications in Cockpits
5.1 Trends of AI Applications in Cockpits
Trend 1:
Trend 2: From Large Models to Agents
Trend 3:
Trend 4:
Trend 5:
Trend 6:
Trend 7:
5.2 Resource Calculation for AI Technology Implementation in Cockpits
Resource calculation
Advantages and disadvantages of different Cockpit AI algorithms

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability Reasoning capabilities drive up the performance of foundation models. Since the second ha...

China's New Passenger Cars and Suppliers' Characteristics Research Report, 2024-2025

Trends of new cars and suppliers in 2024-2025: New in-vehicle displays are installed, promising trend of AI and cars is coming  ResearchInChina releases the China's New Passenger Cars and Suppli...

Global and China Skateboard Chassis Industry Report, 2024-2025

Skateboard chassis research: already used in 8 production models, and larger-scale production expected beyond 2025 Global and China Skateboard Chassis Industry Report, 2024-2025 released by ResearchI...

Two-wheeler Intelligence and Industry Chain Research Report, 2024-2025

Research on the two-wheeler intelligence: OEMs flock to enter the market, and the two-wheeler intelligence continues to improve This report focuses on the upgrade of two-wheeler intelligence, analyz...

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号