Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025
  • Apr.2025
  • Hard Copy
  • USD $4,700
  • Pages:620
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: CYH123
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial

As Chinese new energy vehicle manufacturers propose "Equal Rights for Intelligent Driving," when a high-level autonomous driving system is in operation, the time from the system issuing a takeover request to an actual collision is only 1-2 seconds. The importance of "safety of the intended functionality (SOTIF)" design by OEMs is self-evident. Mandatory industry standards and laws and regulations are essential. In the case of the European functional safety standard ISO 26262, accountability mechanisms can compel OEMs to take safety design seriously.

In recent years, OEMs and suppliers have placed greater emphasis on functional safety certification. According to statistics of public information, in 2024, Chinese companies obtained 134 functional safety certifications, including 52 functional safety product certifications (compared to 44 in 2023).  
 
In addition to functional safety certification, driven by the formal implementation of SOTIF standards, over the past two years, more than 20 OEMs and suppliers, including Great Wall Motor, FAW Hongqi, Changan, GAC, Horizon Robotics, Jingwei Hirain, Huawei, Desay SV, and SenseAuto, have deployed SOTIF processes and obtained pre-certification, laying a safety foundation for their further layout of autonomous driving systems. 

In terms of standard, ISO incorporates AI into functional safety certification.

On the regulation front, in December 2024, the International Organization for Standardization (ISO) officially released ISO/PAS 8800:2024 Road Vehicles—Safety and Artificial Intelligence. This standard aims to manage and enhance the safety of AI systems in road vehicles, and provide a comprehensive safety framework and guidelines for ever wider adoption of AI technology in the automotive sector.  
 
The core content of ISO/PAS 8800 includes: AI safety lifecycle management, safety requirements for AI systems, design and verification processes, AI system safety analysis, and data-related safety considerations. Its implementation will effectively help OEMs, component suppliers, and software developers systematically identify and manage potential risks in AI-related technology applications, thereby improving the overall safety of automotive products.
 
Additionally, ISO plans to include safety requirements for AI systems in the third edition of ISO 26262, scheduled for release in 2027. This will cover failure mode identification for deep learning models, safety mechanism design, and verification methods.
 
The new third edition requires OEMs to establish a full lifecycle management system for AI development, involving transparency and traceability in data collection, model training, deployment verification, and other stages. For example, formal verification is required to ensure the determinacy of neural network outputs, and safety cases are established for AI components.  
 
Furthermore, in January 2024, SC 42, the joint IEC and ISO committee that develops international standards for artificial intelligence (AI), formulated and released ISO/IEC TR 5469:2024 Artificial Intelligence—Functional Safety and AI Systems, aiming to address the differences between traditional functional safety system development processes, and the technical characteristics and processes of AI technology development and enable the gradual application of AI technology in functional safety systems. The report highlights the application and usage levels of AI technology in safety-related systems, the components of AI technology, the unique technical characteristics and risks introduced by AI compared to non-AI technology, how to apply AI technology in functional safety systems, how to use non-AI technology to ensure the safety of AI-controlled systems, and practical techniques for designing and developing safety-related functions using AI systems. 

Suppliers' Layout of Functional Safety Solutions for AI Systems

Facing challenges in AI system safety, suppliers such as Bosch and NVIDIA have introduced AI system safety-related solutions.

For intelligent driving, Bosch has proposed an AI Safety mechanism. Its Chinese and global teams have applied years of expertise in AI safety, including pre-research, practical processes, methodologies, and tools, into every stage of the full development cycle of functional safety for high-level intelligent driving solutions, involving data selection, model safety, and model verification, so as to ensure safety for AI-driven driving systems in all aspects.

Bosch has also introduced an innovative, systematic, and structured solution—the Machine Learning Development V-Model Process, which combines the traditional system/software development V-model and expands with a data-driven approach, referred to as the Data-Driven Engineering (DDE) process.
 
DDE provides a systematic process for ML system development, featuring a flexible and scalable operational design domain (ODD) analysis method. It standardizes data management methods for ML system development and provides infrastructure for safety analysis, testing, verification, and functional iteration of ML systems.
 
With the support of AI foundation models, the functional safety processes in vehicle function development, including hazard identification, risk assessment, functional safety concept, system design, and safety implementation, can benefit from AI at each stage. 

For example, in the hazard identification phase, AI and LLMs can assist by analyzing vast datasets, historical accidents, and industry reports. They process unstructured data, such as natural language documents, to extract valuable insights that traditional methods might overlook, and detect potential hazards that could escape human eyes.

In October 2024, Jingwei Hirain successfully self-developed HIRAIN FuSa AI Agent, a functional safety agent capable of automatically conducting hazard analysis and risk assessment for functional safety analysis targets, setting safety goals, conducting safety analysis and deriving safety requirements, and continuously performing R&D testing and verification to ensure vehicle safety.

At GTC 2025, NVIDIA announced NVIDIA Halos, a full-stack, comprehensive safety system for autonomous vehicles that brings together NVIDIA’s lineup of automotive hardware and software safety solutions with its cutting-edge AI research in AV safety.
 
Halos is a holistic safety system on three different but complementary levels. At the technology level, it spans platform, algorithmic and ecosystem safety. At the development level, it includes design-time, deployment-time and validation-time guardrails. And at the computational level, it spans AI training to deployment, using three powerful computers — NVIDIA DGX for AI training, NVIDIA Omniverse and NVIDIA Cosmos running on NVIDIA OVX for simulation, and NVIDIA DRIVE AGX for deployment.

Serving as an entry point to Halos is the NVIDIA AI Systems Inspection Lab, which allows automakers and developers to verify the safe integration of their products with NVIDIA technology. The AI Systems Inspection Lab has been accredited by the ANSI National Accreditation Board for an inspection plan integrating functional safety, cybersecurity, AI safety and regulations into a unified safety framework.
 
The NVIDIA DRIVE AI Systems Inspection Lab also complements the missions of independent third-party certification bodies, including technical service organizations such as TüV SüD, TüV Rheinland and exida, as well as vehicle certification agencies such as VCA and KBA. It dovetails with recent significant safety certifications and assessments of NVIDIA automotive products.

1 Status Quo and Development Trends of Vehicle Functional Safety  
1.1 Definition and Development History of Vehicle Functional Safety  
Definition of Vehicle Functional Safety  
Reasons Why Vehicle Functional Safety Is Required 
Key Features of Vehicle Functional Safety  
Development history of Vehicle Functional Safety (1)  
Development history of Vehicle Functional Safety (2)  
Purpose of Vehicle Functional Safety: Lowering Risks to An Acceptable Level   
Basic Principles of Vehicle Functional Safety Design  
General Workflow of Vehicle Functional Safety   
Example of SEooC Software Development Process  
Cost Structure of Vehicle Functional Safety  
Classification of Vehicle Functional Safety Software Tools  
Design and Verification Methods for Vehicle Functional Safety  
Basic Analysis Methods for Vehicle Functional Safety  
Basic Definitions Related to Vehicle Functional Safety   

1.2 Development Trend 1 of Vehicle Functional Safety:  
...  

1.3 Development Trend 2 of Vehicle Functional Safety:  
1.4 Development Trend 3 of Vehicle Functional Safety:  

1.5 Development Trend 4 of Vehicle Functional Safety:  

1.6 Development Trend 5 of Vehicle Functional Safety: OEMs Place Increasing Emphasis on Safety 
OEMs Place Greater Emphasis on Functional Safety and SOTIF Requirements  
Increasing Functional Safety Certifications of OEMs (1)  
Increasing Functional Safety Certifications of OEMs (2)  
Increasing Functional Safety Certifications of OEMs (3)  
Increasing Functional Safety Certifications of OEMs (4)  
Increasing Functional Safety Certifications of OEMs (5)   
Increasing SOTIF Certifications of OEMs   
Industrial Division of Labor in Vehicle Functional Safety (1)   
Industrial Division of Labor in Vehicle Functional Safety (2)  
Key Tasks for OEMs and Component Suppliers Regarding Functional Safety  
Steps for Implementing Functional Safety in Vehicle Projects of OEMs
Cases of OEMs’ Assessment of Suppliers’ Functional Safety Capabilities  
SOTIF Development and Testing Process   
Challenges and Key Elements in Implementing Functional Safety and SOTIF in OEMs  
Status Quo and Trends of OEMs Deploying Functional Safety and SOTIF Solutions    

2 Status Quo and Related Scenario Cases of Vehicle SOTIF   
2.1 Overview of Vehicle SOTIF     
Definition of Vehicle SOTIF     
Reasons for Proposing Vehicle SOTIF     
Analysis of Vehicle SOTIF Scenarios  
Purpose of Vehicle SOTIF     
SOTIF Methodology (1)  
SOTIF Methodology (2)   
Vehicle SOTIF System Analysis Methods  
Typical Case of L3 SOTIF Design  

2.2 Integration Trends of Vehicle SOTIF and Functional Safety  
Vehicle Functional Safety VS SOTIF  
Integration of Vehicle Functional Safety and SOTIF (1)  
Integration of Vehicle Functional Safety and SOTIF (2)  
Exploration of Integration of Vehicle Functional Safety and SOTIF Processes  
Machine Learning and Vehicle Functional Safety & SOTIF (1)  
Machine Learning and Vehicle Functional Safety & SOTIF (2)  
Breakthroughs in Real-time SOTIF Risk Perception and Protection Technologies  

2.3 SOTIF in ADAS 
SOTIF in Lane Keeping System 
SOTIF in Autonomous Emergency Braking   
SOTIF in Adaptive Cruise Control 
SOTIF in Traffic Congestion System  
SOTIF in Automated Parking System 
SOTIF Design of Control Strategies for Autonomous Emergency Braking (AEB)  

2.4 SOTIF in Autonomous Driving System  
Composition of Autonomous Driving System  
SOTIF Related to Perception  
SOTIF Related to Prediction  
SOTIF Related to Decision  
SOTIF Technologies Related to Control  
SOTIF Related to Human-Machine Interaction  
SOTIF in V2X 

3 Standards and Policies Concerning Vehicle Functional Safety and SOTIF 
3.1 Vehicle Functional Safety Standards and Policies  
Global Vehicle Functional Safety Standards  
Development of Foreign Functional Safety and SOTIF Standards 
Development of ISO 26262 International Functional Safety Standards 
ISO 26262 Third Edition Update Plan  
ISO 26262 Third Edition Update Plan  
ISO 26262 Third Edition Update Plan  
Vehicle Functional Safety in the EU
Development of Vehicle Functional Safety in the US
Development of Vehicle Functional Safety Standards in China
Vehicle Functional Safety Standard Research Organizations in China
Vehicle Functional Safety Standard Research Organizations in China: Architecture of Vehicle Functional Safety Standardization Promotion Center 
China's Special Standards for Vehicle Functional Safety  
China's Vehicle Functional Safety Standards  
Testing and Evaluation Methods for Vehicle Functional Safety and SOTIF  
China's Medium- and Long-Term Plan for Vehicle Functional Safety and SOTIF Standards Research  
China's Policies Concerning Vehicle Functional Safety and SOTIF 
Guidelines for the Construction of the National Internet of Vehicles Industry Standard System (Intelligent Connected Vehicles) (2023) 
Notice on Piloting Admittance and Road Access of Intelligent Connected Vehicles: Overall Requirements and Organized Implementation   
Notice on Piloting Admittance and Road Access of Intelligent Connected Vehicles: Supporting Measures    
Notice on Piloting Admittance and Road Access of Intelligent Connected Vehicles: Explanation (1)     
Notice on Piloting Admittance and Road Access of Intelligent Connected Vehicles: Explanation (2)    
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Functional Safety Requirements at Corporate Level  
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Corporate Requirements for Functional Safety Guarantee  
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Corporate Requirements for SOTIF Guarantee   
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements at Product Level    
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements for Functional Safety of Vehicles and Autonomous Driving Systems  
Implementation Guide for Piloting Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements for SOTIF of Vehicles and Autonomous Driving Systems  

3.2 Vehicle SOTIF Standards and Policies  
Vehicle SOTIF Standards  
SOTIF-Related Requirements in Major Countries' Autonomous Driving System Regulations and Standards 
China's Main Vehicle SOTIF Standards  
Construction of Vehicle SOTIF Standards in China 

3.3 ISO 26262 Vehicle Standards   
ISO 26262 Vehicle Functional Safety Standards  
ISO 26262 First Edition VS Second Edition  
ISO 26262 Third Edition Covers New Use Cases  
Introduction to ISO 26262 Standard Content  
ISO 26262-2: Management of Functional Safety (1)  
ISO 26262-2: Management of Functional Safety (2)  
ISO 26262-3: Functional Safety Concept 
ISO 26262-3: Hazard Analysis and Risk Assessment (HARA) (1)  
ISO 26262-3: Hazard Analysis and Risk Assessment (HARA) (2)  
ISO 26262-3: Hierarchy of Safety Goals and Functional Safety Requirements  
ISO 26262-4: Product Development at the System Level  
ISO 26262-4: Technical Safety Concept  
ISO 26262-4: System and Item Integration and Testing (1)  
ISO 26262-4: System and Item Integration and Testing (2)  
ISO 26262-4: System and Item Integration and Testing (3)  
ISO 26262-4: System and Item Integration and Testing (4)  
ISO 26262-5: Product Development at the Hardware Level (1)  
ISO 26262-5: Product Development at the Hardware Level (2)   
ISO 26262-5: Hardware Design  
ISO 26262-5: Hardware Safety Analysis  
ISO 26262-5: Hardware Design Verification
ISO 26262-5: Evaluation of the Hardware Architectural Metrics  
ISO 26262-5: Evaluation of Safety Goal Violations due to Random Hardware Failures (1)   
ISO 26262-5: Evaluation of Safety Goal Violations due to Random Hardware Failures (2)   
ISO 26262-5: Evaluation of Safety Goal Violations due to Random Hardware Failures (3)  
ISO 26262-5: Hardware Integration and Testing (1)  
ISO 26262-5: Hardware Integration and Testing (2)  
ISO 26262-6: Software Functional Safety   
ISO 26262-6: General Topics for the Product Development at the Software Level  
ISO 26262-6: Software Development Plan  
ISO 26262-6: Software Safety Requirements  
ISO 26262-6: Software Architectural Design  
ISO 26262-6: Software Architectural Design - Software Safety Mechanisms  
ISO 26262-6: Software Architectural Design - Mechanisms for Software Error Handling 
ISO 26262-6: Software Architectural Design - Software Architecture Verification Methods  
ISO 26262-6: Software Unit Design and Implementation  
ISO 26262-6: Software Unit Verification  
ISO 26262-6: Software Unit Test Case Derivation and Coverage Analysis  
ISO 26262-6: Software Integration and Verification  
ISO 26262-6: Software Integration Test Coverage  
ISO 26262-6: Testing of the Embedded Software 

3.4 ISO 21448 Vehicle Standards  
Vehicle SOTIF Standards  
Development of ISO 21448 Vehicle SOTIF Standards  
ISO/CD 21448 Vehicle SOTIF Standards Catalog   
Vehicle SOTIF Development Process (1)  
Vehicle SOTIF Development Process (2): Specification Definition and Design  
Vehicle SOTIF Development Process (3): Hazard Analysis and Risk Assessment  
Vehicle SOTIF Development Process (4): Identification and Evaluation of Potential Functional Insufficiencies and Potential Triggering Conditions  
Vehicle SOTIF Development Process (5): System Optimization and Improvement  
Vehicle SOTIF Development Process (6): Product Verification and Evaluation  
Vehicle SOTIF Development Process (7): Product Verification and Evaluation  
Vehicle SOTIF Development Process (8): Product Verification and Evaluation  
Vehicle SOTIF Development Process (9): Operation Phase Activities

4 Development of Vehicle Functional Safety and SOTIF Certifications  
4.1 Vehicle Functional Safety Certification 
Overview of Vehicle Functional Safety Certification  
Categories of Functional Safety Certification  
Main Processes of Vehicle Functional Safety Certification  
Basic Steps of Vehicle Functional Safety Process Certification  
Basic Steps of Vehicle Functional Safety Product Certification  
Cases of Functional Safety Product Certification R&D Process (1)  
Cases of Functional Safety Product Certification R&D Process (2)  
Achievements in Vehicle Functional Safety Certification  
Vehicle Functional Safety Certification Levels - ASIL
Vehicle Software Certification and Tool Confidence Level (TCL)  
Tool Confidence Level (TCL) Evaluation Process  
Main Methods of Vehicle Functional Safety Certification  
Major Third-Party Certification Authorities of Vehicle Functional Safety (1)  
Major Third-Party Certification Authorities of Vehicle Functional Safety (2)  
Statistics on Chinese Companies Passing Vehicle Functional Safety Certification   

4.2 Vehicle SOTIF Certification 
Overview of SOTIF Certification  
Vehicle SOTIF Certification Process  
Evaluation of Vehicle SOTIF Assurance System  
Key Deliverables in Vehicle SOTIF Certification Management Process  
Third-Party Certification Authorities of Vehicle SOTIF   
OEMs Passing SOTIF Certification, 2022 - March 2025  
Suppliers Passing SOTIF Certification, 2022 - March 2025

4.3 ASPICE Certification 
Introduction to ASPICE 
Content of ASPICE 
Capability Levels of ASPICE 
ASPICE Development Process    
ASPICE Process Construction and Tool Providers  
Relationship between ASPICE and ISO 26262  
Integration of ASPICE and Functional Safety  
Integration of ASPICE and Vehicle Development  
Overview of ASPICE Certification  
ASPICE Certification Process  
ASPICE Certification Audit  
ASPICE Certification Audit: Preparation  
ASPICE Certification Audit: Execution  

4.4 Major Vehicle Functional Safety and SOTIF Certification Authorities   
4.4.1 SGS Group  
One-Stop Solutions for Automotive Industry 
One-Stop Solutions for Automotive Industry   
Functional Safety Services  
ISO 26262 Certification  
Technical Solution Process of ISO 26262 Certification
SOTIF Services   
Major Clients of ISO 26262 Certification: International  
Major Clients of ISO 26262 Certification: China    

4.4.2 TüV Rheinland  
Profile  
Automotive Service Capabilities  
ISO 26262 Certification Services  
ASPICE Certification  

4.4.3 TüV SüD  
Automotive Solutions  
Vehicle Functional Safety Certification Services  
Functional Safety Training Services  

4.4.4 DNV  
Profile    
Vehicle Functional Safety Certification  
ASPICE Certification  

4.4.5 UL Solutions  
Functional Safety Certification Services  
Vehicle Functional Safety Certification Services  
SOTIF Certification Services  
Chinese Product Certification Schemes

4.4.6 DEKRA   
Profile    
Vehicle Functional Safety  
Vehicle Cybersecurity   
Type Approval and Regulatory Certification   

4.4.7 ResilTech   
Profile    
Provide Safety Certification and Certification Items   

4.4.8 Bureau Veritas (BV)  
Profile     
ISO 26262, TISAX, ISO 39001  
Automotive Standard IATF 16949  

4.4.9 Exida  
Equipment Certification  

4.4.10 China Certification Center For Automotive Products 
Functional Safety Certification Services  
Automotive ASPICE   

4.4.11 China Quality Certification Center (CQC)  
Organizational Structure and Certification Process  
Functional Safety Certification Services  
Vehicle Functional Safety and ASPICE Technical Service Items
IATF 16949, QMS Certification for Automotive Industry

4.4.12 CEPREI Certification Body  
CEPREI (the Fifth Institute of Electronics of the Ministry of Industry and Information Technology)   
CEPREI Certification Body  
CEPREI Obtains Internationally Recognized ISO 26262 Certification 
ISO 26262  
ISO 21448  
IATF 16949, ISO/SAE 21434  
ISO 24089, AEC Q 
Automotive SPICE 


5 Functional Safety Requirements, Design and Cases of Major Automotive Components and Systems 
5.1 Functional Safety Requirements of Major Automotive Components  
Areas Involved in Vehicle Functional Safety  
ASIL Requirements for Functional Safety of Major Automotive Components  
Functional Safety Requirements for Basic Software Layer of Automotive Domain Controllers  
Automotive Companies That Need to Meet ISO 26262 Requirements   
Functional Safety Layout of Component Suppliers  

5.2 Functional Safety Design and Cases of Automotive Chip Products 
ASIL Requirements for Common Automotive ECUs  
Typical Safety Mechanism Technologies in Automotive Chips  
Chip-Level Vehicle Functional Safety Supporting Distributed System-Wide Monitoring 
Functional Safety Solutions for Automotive SoCs  
Functional Safety Solutions for Automotive SoCs/MCUs  
Functional Safety for Digital Chips  
Functional Safety Design of DRAM  
Chiplet Technology and Functional Safety  
Functional Safety Design of Qualcomm 8295 
Internal Structure of Functional Safety Management Module of Qualcomm 8295
Functional Safety Design of Qualcomm 8775: Built-in 4-Core Functional Safety Island  
Internal Structure of Functional Safety Island System of Qualcomm 8775 
Functional Safety Design of Qualcomm Software 
Functional Safety Certification and Safety Mechanism Applications of AutoChips' Major Automotive Chip Products  
Functional Safety Mechanisms of AutoChips' Cockpit SoC Products  
Functional Safety Mechanisms of AutoChips' Automotive MCU AC7801x  
Functional Safety Mechanisms of AutoChips' Automotive MCU AC7840x  
Functional Safety Mechanisms of ChipON's Automotive MCU KF32A158  
C*Core Technology’s Automotive MCU Product Line Layout
Functional Safety Design of C*Core Technology’s Next-Gen High-Performance Automotive MCU CCFC3012PT   
Functional Safety Layout Cases of Suppliers (3): ARM 
Functional Safety Design of C*Core Technology’s Automotive MCU CCFC3008PT   
Functional Safety Layout Cases of Suppliers (3): ARM’s Functional Safety Solutions  
Functional Safety Layout Cases of Suppliers (3): ARM's Split-Core, Lockstep, and Mixed Modes  
Functional Safety Layout Cases of Suppliers (3): Application Cases of ARM's Split-Core, Lockstep, and Mixed Modes   

5.3 Functional Safety Design and Cases of Automotive Operating Systems  
High-Safety Requirements of Next-Gen Intelligent Vehicle Operating Systems  
Practical Implementation of Functional Safety for Intelligent Vehicle Operating Systems   
Functional Safety of Linux  
Functional Safety of BlackBerry QNX OS  
Functional Safety Solution for BlackBerry QNX Basic Platform Software 
Functional Safety for QNX Virtualization Basic Software Platform  
Functional Safety Mechanisms for Intelligent Driving OS: Functional Safety Goals of Functional Software of Intelligent Driving OS of Automotive Intelligence and Control of China (AICC) 
Functional Safety Mechanisms for Intelligent Driving OS: Functional Safety Mechanisms of Functional Software of Intelligent Driving OS of Automotive Intelligence and Control of China (AICC) 
Functional Safety of Vehicle Control OS    
Functional Safety Mechanisms of Vehicle Control OS  

5.4 Functional Safety Design and Cases of Vehicle Centralized EEA 
Challenges in Design and Development of Functional Safety of Centralized EEA   
Functional Safety Development Process of Centralized EEA  
Functional Safety Development Requirements of Centralized EEA  
Key Factors to Be Considered in Design and Development of Functional Safety for Centralized EEA  
Redundancy Design in Functional Safety Development for Centralized EEA  
Functional Safety Development Practice Case: IM Motors  
Challenges in Hardware Functional Safety in CCU + Zonal Architecture, and Solutions (1)   
Challenges in Hardware Functional Safety in CCU + Zonal Architecture, and Solutions (2)   
Functional Safety Design of Cockpit-Driving Integration Computing Platform with Dual SoCs (Orin X + Qualcomm 8295)  
Functional Safety of In-Vehicle Networks: NXP's ASIL B-Compliant In-Vehicle Network Product TJA1103  
Functional Safety of Vehicle Intelligent Computing Platforms  
Functional Safety Evaluation for Vehicle Computing Foundation Platforms  
Functional Safety of BlackBerry QNX-Based Cockpit-Driving Integration Controller  

5.5 Functional Safety Design and Cases of Automotive Autonomous Driving Systems   
Functional Safety-Related Standard Requirements of Autonomous Driving Systems  
Functional Safety Product Certification of Major Suppliers of Intelligent Driving OS 
Functional Safety Product Certification of Major Suppliers of Intelligent Driving Middleware and System Software 
Functional Safety Product Certification of Major Suppliers of Intelligent Driving and Parking Solutions 
Functional Safety Certification of Intelligent Driving Domain Controller and Other Computing Platform Products  
Functional Safety Certification of Sensor and Radar Products  
Functional Safety Certification of Central Computing Chip Products  
Functional Safety Certification of Intelligent Driving SoC Products  
Functional Safety Certification of MCUs for Intelligent Driving  
Functional Safety Design of Typical L4 Autonomous Driving Systems: Fail-Operational Architecture and Backup Systems  
Functional Safety Design of Typical L4 Autonomous Driving Systems: Functional Safety Architecture and Redundancy Design 
Functional Safety Design of Typical L4 Autonomous Driving Systems  
Functional Safety Design of Typical L3 Autonomous Driving Systems: Redundant Control Network Architecture   
Functional Safety Design of Typical L3 Autonomous Driving Systems: Braking Redundancy Control Strategy  
Functional Safety Requirements of Driving Assistance Systems  
Functional Safety Requirements of Intelligent Driving Function HPA   
Functional Safety Requirements of Intelligent Driving System ICC  
NVIDIA Halos: A Full-Stack Comprehensive Safety System for Autonomous Vehicles  
Functional Safety Deployment Scheme for NVIDIA Autonomous Driving System  
Functional Safety Design of NVIDIA DRIVE OS  
Functional Safety Design of NVIDIA Orin 
Safety Architecture of ADAS Controllers  
Functional Safety Design of Intelligent Driving Systems with SoC + MCU  
Functional Safety Design of Single-SoC Intelligent Driving Domain Controllers: Functional Safety Island Integrated into SoC  
Functional Safety Design of Intelligent Driving Domain Controllers: Main SoC + Redundant Backup SoC Must Meet ASIL D Standards   
Functional Safety Design of High-level Autonomous Driving Domain Controllers (1)   
...  
Functional Safety Design of High-level Autonomous Driving Domain Controllers (6)  
Cases of Overall System Safety Design for Autonomous Driving  
Functional Safety for ADAS Lane Departure Warning  
End-to-End Functional Safety Case of L2 Autonomous Driving Systems  
Functional Safety of Autonomous Driving Computing and Decision System Platforms  
Functional Safety Solutions for Parking Systems  
Functional Safety Implementation for Autonomous Driving Projects (Torque)  
Functional Safety Solutions for Autonomous Driving Software Middleware  

5.6 Functional Safety Design and Cases of Vehicle Body, Powertrain, Chassis and Other Systems 
Functional Safety Requirements of Intelligent Chassis Technologies  
Introduction of Functional Safety Requirements in Steering and Braking Related Standards  
Updates in 2025 Edition of Vehicle Functional Safety Validation  
Functional Safety Product Certification of Powertrain, Braking, Steering, and Chassis Systems of Major Companies  
Functional Safety Product Certification of E-Drive Systems of Major Companies 
Functional Safety of MCUs for Powertrain and Chassis Domains (1)  
Functional Safety of MCUs for Powertrain and Chassis Domains (2)  
Functional Safety Product Certification Status of Body Control Systems of Major Companies  
Functional Safety Certification of Major MCUs for Body Domain (1)  
Functional Safety Certification of Major MCUs for Body Domain (2)  
Functional Safety Design of Intelligent Chassis Control Technologies: Fail-Safe Control 
Functional Safety Design of Intelligent Chassis Control Technologies: Fail-Safe Control 
Functional Safety Design of Intelligent Chassis Control Technologies: Fail-Safe Design Indicators   
Functional Safety Design of Intelligent Chassis Control Technologies: Health Status Management 
Functional Safety Design of Intelligent Chassis Control Technologies: Chassis Health Management Indicators  
Functional Safety Design of All-in-one E-Drive Systems: Functional Safety Design of E-Drive Systems of Shanghai E-Drive Foresight Research Institute   
Safety Protection Design of E-Drive Systems  
Functional Safety Design of All-in-one E-Drive Systems: Functional Safety Design of Geely’s 11-in-1 E-Drive System    
Functional Safety Design of EMB Control Module in Chassis Domain Controller: Chance Technology’s EMB Redundancy Design  
Functional Safety Solution for Power Domain Controller: Infineon AURIX TC297TA-Based Power Domain Controller  
Functional Safety Design of Braking Systems  
Functional Safety Solution for Steer-by-Wire Systems  
SOTIF Solution for Steer-by-Wire Systems  
Functional Safety Library Design of Shanghai ZC Technology’s Intelligent Chassis  

5.7 Functional Safety Design and Cases of Automotive Cockpit, Battery Management, and Other Systems  
Functional Safety Product Certification of Cockpit SoC Products  
Functional Safety Product Certification of Cockpit MCUs  
Functional Safety Product Certification of Cockpit Domain MCUs  
Functional Safety Design of Virtualization-Based Cockpit Systems  
Functional Safety Design of Hardware Isolation-Based Cockpit Systems  
Functional Safety Design of Cockpit Domain Control System Based on Qualcomm 8295 (1): SoC + MCU   
Functional Safety Design of Cockpit Domain Control System Based on Qualcomm 8295 (2)  
Functional Safety Requirements of Vehicle Displays  
Functional Safety Mechanism for Single-Chip Cockpit-Parking Integration Solutions: Chip Built-in Functional Safety Island  
Functional Safety Product Certification of BMS and Batteries of Major Companies 
Functional Safety Product Certification of Simulation and Testing Tools  
PACK Functional Safety Working Concept  
Functional Safety Solution for MPS’ Automotive Power Supply 
LiDAR Functional Safety Design Features 

6 Functional Safety and SOTIF Layout of OEMs   
6.1 Changan 
Status Quo and Trends of Functional Safety and SOTIF Solution Layout 
Status Quo of Functional Safety Layout   
Intelligent Driving Domain Controller Functional Safety Design Strategy: Mutual Monitoring between SOC and MCU to Achieve Safety Redundancy  
Intelligent Driving Domain Controller Functional Safety Design Strategy: Case 
Status Quo of Functional Safety Layout  
Functional Safety Organization Team  
Functional Safety Business Philosophy  
Software Quality Management: System Construction  
Software Quality Management: Organizational Setup  
Software Quality Management: Functional Safety/SOTIF  

6.2 GAC Group  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout
Functional Safety Certification 
Functional Safety of Intelligent Driving System 
Functional Safety of Latest EEA
Functional Safety of Intelligent Driving System 

6.3 Great Wall Motor  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout Functional Safety Certification 
Functional Safety of GEEP 4.0 Architecture 
Functional Safety Deployment of Coffee Intelligence
Functional Safety Deployment of Coffee Intelligence: Controller Redundancy, Architecture Redundancy  
Functional Safety Deployment of Coffee Intelligence: Multi-Source Heterogeneous Sensor Solution with Perception Redundancy  
Six Major Safety Redundancy Systems of Coffee Intelligence: Power Redundancy, Braking Redundancy   
Functional Safety Deployment of Coffee Intelligence: Fully Redundant Steering System   
Functional Safety Deployment of Coffee Intelligence: Redundant Systems in Great Wall Mecha Dragon    

6.4 Geely 
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Functional Safety Certification 
Full-Domain Safety Layout  
Functional Safety Design of GEEA 3.0 
Functional Safety of L3 Intelligent Driving
Thor EM-i Super Hybrid Functional Safety Strategy: Hybrid Safety Redundancy Patent Technology   
Functional Safety Deployment of 11-in-1 E-Drive System
Introduction of S-SDLC   
Functional Safety Design Scheme of Steer-by-Wire (SbW): Classification of Functional Safety Hazards in Electronic Control   
Functional Safety Design Scheme of Steer-by-Wire (SbW): Functional Safety Goals of Steer-by-Wire  
Functional Safety Design Scheme of Steer-by-Wire (SbW): Driving Strategy Analysis in Case of Steer-by-Wire Failure   
Functional Safety Design Scheme of Steer-by-Wire (SbW): Redundancy Backup Planning  
Functional Safety Design of Chassis Domain Controller Software Architecture 
Functional Safety Design of Chassis Domain Controller: System Backup Solution Design   

6.5 IM Motors  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Safety System Construction: Five-Zero Safety System   
Functional Safety Design of Digital Chassis: VMC Independent EMB Module as Mutual Redundant Backup  
Challenges in Functional Safety Development of Centralized EEA 
Functional Safety Development Process of Centralized EEA 
Functional Safety Development Requirements of Centralized EEA  
Redundancy Design in Design and Development of Functional Safety of Centralized EEA
Practice Case of Functional Safety Development of Centralized EEA

6.6 NIO  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
SOTIF Certification  
Functional Safety Design of Vehicle Full-Domain Operating System SkyOS  
Seven-Layer Vehicle Safety Redundancy Design in NIO ET9 
Supercomputing Platform Functional Safety Strategy of NT2.0 Platform: Built-In Independent Redundant Backup Chip   
Functional Safety Strategy of Chassis Domain Controller: Redundant Design of Intelligent Chassis Controller (ICC)    

6.7 XPeng 
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Functional Safety Strategy of Canghai Platform: Redundancy Design  
Intelligent Driving Functional Safety Strategy   

6.8 Li Auto  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Functional Safety Design Strategy Principles  
Functional Safety Strategy of Braking System: Redundant Backup Solutions for Braking, Steering, etc.   
Autonomous Driving Scenario Library Construction  
Functional Safety Cases: Four-Door Collision Unlock Functional Safety Design  
Functional Safety Cases: Four-Door Cross Power Supply Design  
Vehicle Power Supply Functional Safety Strategy: Vehicle Power Supply Backup Solution  

6.9 BMW  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Safety Strategy  
Functional Safety of Autonomous Driving Platform Architecture (1)  
Functional Safety Design and Deployment of Autonomous Driving Platform Architecture (1): Hardware Redundancy Design   
Functional Safety Design and Deployment of Autonomous Driving Platform Architecture (2): Architecture and System Redundancy Design  
Functional Safety Design of L3 Autonomous Driving 
Functional Safety Design and Deployment of Autonomous Driving Platform Architecture (3): Drive System Redundancy Design  
Functional Safety of Autonomous Driving Platform Architecture (2)  

6.10 Mercedes-Benz  
Status Quo and Trends of Functional Safety and SOTIF Solution Layout  
Automotive Functional Safety  
Functional Safety and SOTIF Measures of L3 System Drive Pilot 
Holistic Safety Concept  

6.11 Ford  
Safety Strategy  
Vehicle Functional Safety Analysis Process  

6.12 Volvo  
World Tree Intelligent Safety System  
Functional Safety Design of Exhaust Brake System


7 Vehicle Functional Safety and SOTIF Solution Providers  
7.1 Jingwei HiRain 
Functional Safety and SOTIF Solutions   
Overview of Functional Safety Team 
Functional Safety Agent Product: HIRAIN FuSa AI Agent  
Functional Safety Agent Product: HIRAIN FuSa AI Agent   
Intelligent Connected Vehicle (ICV) Functional Safety Development Solutions  
ICV Functional Safety Consulting Solution Process  
ICV Functional Safety Development Solutions: Vehicle-Level Functional Safety Development  
ICV Functional Safety Development Solutions: Component-Level Functional Safety Development  
ICV Functional Safety Development Solutions: Functional Safety R&D Toolchain Planning  
ICV Intelligent Driving Functional Safety Solutions  
ICV Intelligent Driving Functional Safety Solutions: Certification Items for Intelligent Driving Safety Products
ICV Intelligent Driving Functional Safety Solutions: Consulting Services  
Intelligent Driving Functional Safety Development Platform  
ICV SOTIF Development Solutions  
ICV SOTIF Development Solutions: SOTIF Process Services  
ICV SOTIF Development Solutions: SOTIF Product Services  
ICV SOTIF Development Solutions: Autonomous Driving Safety Component Products  
ICV Functional Safety Testing Solutions  
ICV Functional Safety/SOTIF Testing Solutions  
ICV Functional Safety Testing Solutions: Functional Safety Testing Consulting Services  
ICV Functional Safety Testing Solutions: Software Development Phase Testing  
ICV Functional Safety Testing Solutions: System-Level Functional Safety Testing  
ICV Functional Safety Testing Solutions: Vehicle-Level Functional Safety Testing  
ICV SOTIF Testing Solutions: SOTIF Testing Consulting Services  
ICV SOTIF Testing Solutions: Simulation Testing  
ICV SOTIF Testing Solutions: Real-Vehicle Testing  
Development and Verification Platform for Intelligent Driving Functional Safety & SOTIF 
Research on Vehicle Functional Safety Development Under SOA 

7.2 VECTOR  
Functional Safety Solutions  
SOTIF Solutions   
Vehicle Functional Safety Solutions   
Functional Safety Solutions: Vehicle Functional Safety Consulting Services   
PREEvision Design Tool Supports Functional Safety Processes  
MICROSAR Safe  
MICROSAR Adaptive Safe  
Vehicle Functional Safety Testing - VectorCAST
Functional Safety Testing   
Vehicle Functional Safety Analysis Data Quantification Tool: Squore  
SOTIF Solution: Consulting Services    

7.3 Bosch  
Vehicle Functional Safety and SOTIF Solutions  
Functional Safety Services  
AI Safety Layout   
AI System Safety Analysis Solutions  
AI System Safety Analysis Solutions: Four Levels (1)  
...  
AI System Safety Analysis Solutions: Four Levels (5)  
SOTIF Development V-Model  
Data-Driven Engineering (DDE) Process: Four Layers  
Data-Driven Engineering (DDE) Process: ODD as the Starting Point  
Data-Driven Engineering (DDE) Process: V-Model   
DDE Addresses Safety Challenges of ML Systems  
Autonomous Driving System Redundancy Design Solutions (1)  
Autonomous Driving System Redundancy Design Solutions (2)  
Functional Safety Strategy of Braking System: Redundancy Design Solutions (1)  
Functional Safety Strategy of Braking System: Redundancy Design Solutions (2)  
Functional Safety Strategy of Braking System: Redundancy Design Solutions (3)   
Functional Safety Design for Hybrid Electric Vehicles
Mainstream Functional Safety Solutions for Intelligent Cockpits  
TARA Engineering  

7.4 Continental  
Vehicle Functional Safety Solutions  
Functional Safety Consulting and Development Services  
Functional Safety Training Services  

7.5 eSOL  
Key Tools for Functional Safety  
Activities and Related Tool Products for Functional Safety Standards  
Consulting Services for Functional Safety Standards  
Vehicle Functional Safety Document Package Products   

7.6 Synopsys  
Functional Safety Solutions  
Native Automotive Solutions  
Functional Safety Verification Solutions  
VC Functional Safety Management  
TestMAX Testing Solution
IP for ISO 26262 Vehicle Functional Safety  
DesignWare ARC Functional Safety Software  
Functional Safety Standard-Compliant IP for ADAS SoCs 
Functional Safety Standard-Compliant IP for Connected Vehicles and Infotainment System SoCs   
Functional Safety Standard-Compliant IP for Gateway SoCs  
DesignWare IP Subsystem  
IP for ISO 26262 Vehicle Functional Safety   

7.7 CICV 
Profile
Functional Safety-Related Software Tools  
Functional Safety Quality Management Functions and Tool Tree  
Functional Safety Software Tool Evaluation  
Establishment of SOTIF Working Group  
SOTIF Development Process  

7.8 Saimo Technology  
Profile
SOTIF Analysis Tool: Safety Pro  
Saimo and SGS Established a Partnership in China   

7.9 Worthy Technology?  
Profile
Vehicle Functional Safety Consulting Services   
Implementation Solutions for Automotive Electronics Industry Standards 

7.10 OMNEX  
Functional Safety Solutions  
Profile 
Functional Safety Software Products   
Electric and Autonomous Vehicle Software Platform  
OMNEX FuSA Project  

7.11 PARASOFT  
Functional Safety Solutions  
Profile  
Solutions to Help Customers Meet Functional Safety Standards  
Advantages of Functional Safety Solutions  
Parasoft C/C++test  
Parasoft DTP  
Major Automotive Clients 
Parasoft Co-Established Functional Safety Group (FSG)  
FSG Provides One-Stop Functional Safety Certification Services  

7.12 MUNIK  
Functional Safety Solutions  
Profile   
Functional Safety Technical Service Provider  
Technical Service Scope  
Technical Service Modes   
ISO 26262 Semiconductor Functional Safety: Full-Process Technical Services 
ISO 26262 Semiconductor Functional Safety: Training Services  
ISO 26262 Semiconductor Functional Safety: Process Consulting Services  
ISO 26262 Semiconductor Functional Safety: Product Consulting Services  
ISO 21448 SOTIF: Full-Process Technical Services 
Semiconductor Functional Safety FMEDA Tool  
Safety Analysis and Management Software: EnCore SOX  
Major Clients  
Major Clients  

7.13 SafenuX  
Profile    
Products and Services  
Software Code Compliance Services  
ASIL B Software Code Compliance Services
 

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability Reasoning capabilities drive up the performance of foundation models. Since the second ha...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号