Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025
  • Apr.2025
  • Hard Copy
  • USD $4,700
  • Pages:580
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: CL003
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved.

From 2D+CNN small models to BEV+Transformer foundation models, the number of model parameters has soared, making memory a performance bottleneck.
The global automotive memory chip market is expected to be worth over USD17 billion in 2030, compared with about USD4.3 billion in 2023, with a CAGR up to 22% during the period. Automotive memory chips took an 8.2% share in automotive semiconductor value in 2023, a figured projected to rise to 17.4% in 2030, indicating a substantial increase in memory chip costs.

The main driver for the development of the automotive memory chip industry lies in the rapid rise of automotive LLMs. From the previous 2D+CNN small models to BEV+Transformer foundation models, the number of model parameters has significantly increased, leading to a surge in computing demands. CNN models typically have fewer than 10 million parameters, while foundation models (LLMs) generally range from 7 billion to 200 billion parameters. Even after distillation, automotive models can still have billions of parameters.    

From a computing perspective, in BEV+Transformer foundation models, typically those with LLaMA decoder architecture, the Softmax operator plays a core role. Its weaker parallelization capability than that of traditional convolution operators makes memory the bottleneck. Especially memory-intensive models like GPT pose high requirements for memory bandwidth, and common autonomous driving SoCs on market often face the problem of "memory wall".  

End-to-end essentially embeds a small LLM. With the increasing amount of data fed, the parameters of the foundation model will continue to grow. The initial model size is around 10 billion parameters, and through continuous iteration, it will eventually exceed 100 billion.  

On April 15, 2025, at its AI sharing event, XPeng disclosed for the first time that it is developing XPeng World Foundation Model, a 72-billion-parameter ultra-large autonomous driving model. XPeng's experimental results show that the scaling law effect is evident in models with 1 billion, 3 billion, 7 billion, and 72 billion parameters: the larger the parameter scale, the greater the model's capabilities. For models of the same size, the more training data, the greater the model's performance. 

The main bottleneck in multimodal model training is not only GPUs but also the efficiency of data access. XPeng has independently developed underlying data infrastructure (Data Infra), increasing data upload capacity by 22 times, and data bandwidth by 15 times in training. By optimizing both GPU/CPU and network I/O, the model training speed has been improved by 5 times. Currently, XPeng uses up to 20 million video clips to train its foundation model, a figure that will increase to 200 million this year.  

In the future, XPeng will deploy the "XPeng World Foundation Model" to vehicles by distilling small models over the cloud. The parameter scale of automotive foundation models will only continue to grow, posing significant challenges to computing chips and memory. To address this, XPeng has self-developed Turing AI chip, which boasts a utilization 20% higher than general automotive high-performance chips and can handle foundation models with up to 30B (30 billion) parameters. In contrast, Li Auto's current VLM (Vision-Language Model) has about 2.2 billion parameters.      

More model parameters often come with higher inference latency. How to solve the latency problem is crucial. It is expected that the Turing AI chip may offer big improvements in memory bandwidth through multi-channel design or advanced packaging technology, so as to support the local operation of 30B-parameter foundation models.    

Memory bandwidth determines the upper limit of inference computing speed. LPDDR5X is widely adopted but still falls short. GDDR7 and HBM may be put on the agenda.  

Memory bandwidth determines the upper limit of inference computing speed. Assuming a foundation model has 7 billion parameters, at INT8 precision for automotive use, it occupies 7GB of storage. Tesla's first-generation FSD chip has memory bandwidth of 63.5GB/s, meaning it generates one token every 110 milliseconds, with a frame rate of lower than 10Hz, compared with the typical image frame rate of 30Hz in the autonomous driving field. Nvidia Orin with memory bandwidth of 204.5GB/s generates one token every 34 milliseconds (7GB ÷ 204.5GB/s = 0.0343s, about 34ms), barely reaching 30Hz (frame rate = 1 ÷ 0.0343s = 29Hz). Noticeably this only accounts for the time required for data transfer, completely ignoring the time for actual computation, so the real speed will be much lower than the data.    

存储芯片 3.png

DRAM Selection Path (1): LPDDR5X will be widely adopted, and the LPDDR6 standard is still being formulated.  

Apart from Tesla, all current automotive chips only support up to LPDDR5. The next step for the industry is to promote LPDDR5X. For example, Micron has launched a LPDDR5X + DLEP DRAM automotive solution, which has passed ISO26262 ASIL-D certification and meets critical automotive FuSa requirements.

Nvidia Thor-X already supports automotive LPDDR5X, with memory bandwidth increased to 273GB/s. It supports the LPDDR5X standard and PCIe 5.0 interface. Thor-X-Super has an astonishing memory bandwidth of 546GB/s, and utilizes 512-bit wide LPDDR5X memory to ensure extremely high data throughput. In reality, the Super version, like Apple's chip series, simply integrates two X chips into one package, but it is not expected to enter mass production in the short term.

Thor has multiple versions, with five currently known: ① Thor-Super, with 2000T computing power; ② Thor-X, with 1000T computing power; ③ Thor-S, with 700T computing power; ④ Thor-U, with 500T computing power; ⑤ Thor-Z, with 300T computing power. Lenovo's first Thor central computing unit in the world plans to adopt dual Thor-X chips. 

Micron 9600MTPS LPDDR5X already has samples, targeting mobile devices, with no automotive-grade products available yet. Samsung's new LPDDR5X product, K3KL9L90DM-MHCU, empowers high performance from PCs, servers, vehicles, to emerging on-device AI applications. It delivers speeds 1.25 times faster and 25% better power efficiency compared to the previous generation, and has a maximum operating temperature of 105°C. Mass production started in early 2025. A single K3KL9L90DM-MHCU features 8GB and x32 bus, eight chips totaling 64GB.      

As LPDDR5X gradually enters the era of 9600Mbps or even 10Gbps, JEDEC has started developing the next-generation LPDDR6 standard, targeting 6G communications, L4 autonomous driving, and immersive AR/VR scenarios. LPDDR6, as the next-generation memory technology, is expected to have a rate of over 10.7Gbps, even possibly up to 14.4Gbps, with improvements in both bandwidth and energy efficiency - 50% better than the current LPDDR5X. However, mass production of LPDDR6 memory may not occur until 2026. Qualcomm's next-generation flagship chip, Snapdragon 8 Elite Gen 2 (codenamed SM8850), will support LPDDR6. Automotive LPDDR6 may take even longer to arrive. 

DRAM Selection Path (2): GDDR6 is already installed in vehicles but faces cost and power consumption issues. A GDDR7+LPDDR5X hybrid memory architecture may be viable.  

Aside from LPDDR5X, another path is GDDR6 or GDDR7. Tesla’s second-gen FSD chip already supports first-gen GDDR6. HW4.0 uses 32GB GDDR6 (model: MT61M512M32KPA-14) running at 1750MHz (the minimum LPDDR5 frequency is also above 3200MHz). Since it is the first-gen GDDR6, its speed is relatively low. Even with GDDR6, running 10 billion-parameter foundation models smoothly remains unfeasible, though it’s currently the best available.  
Tesla’s third-gen FSD chip is likely under development and may be completed in late 2025, with support for at least GDDR6X.

The next-generation GDDR7 standard was officially released in March 2024, but Samsung had already unveiled the world’s first GDDR7 in July 2023. Currently, both SK Hynix and Micron have introduced GDDR7 products. GDDR requires a special physical layer and controllers, and chips must have a built-in GDDR physical layer and controllers to use GDDR. Companies like Rambus and Synopsys sell relevant IPs.   

存储芯片 6.png

Future autonomous driving chips may adopt hybrid memory architecture, for example, use GDDR7 for processing high-load AI tasks and LPDDR5X for low-power general computing, balancing performance and cost.

DRAM Selection Path (3): HBM2E is already deployed in L4 Robotaxis but remains far from production passenger cars. Memory chip vendors are working on migration of HBM technology from data centers to edge devices. 

High bandwidth memory (HBM) is primarily used in servers. Stacking SDRAM using TSV technology increases not only the cost of the memory itself, but also the cost of TSMC's CoWoS process. Currently CoWoS capacity is tight and expensive. HBM has a much higher price than LPDDR5X, LPDDR5, and LPDDR4X commonly used in production passenger cars, and is not economical.  

SK Hynix’s HBM2E is being exclusively used in Waymo’s L4 Robotaxis, offering 8GB capacity, transmission rate of 3.2Gbps, and impressive bandwidth of 410GB/s, setting a new industry benchmark.

SK Hynix is currently the only vendor capable of supplying HBMs that meet stringent AEC-Q automotive standards. SK Hynix is actively collaborating with autonomous driving solution giants like NVIDIA and Tesla to expand HBM applications from AI data centers to intelligent vehicles.  

Both SK Hynix and Samsung are working to migrate HBM from data centers to edge devices like smartphones and cars. Adoption of HBMs in mobile devices will focus on improving edge AI performance and low-power design, driven by technological innovation and industry chain synergy. Cost and yield remain the primary short-term challenges, mainly involving HBM production process improvement.   

Key Differences: Traditional data center HBM is a "high bandwidth, high power consumption" solution designed for high-performance computing, while on-device HBM is a "moderate bandwidth, low power consumption" solution tailored for mobile devices.  
Technology Path: Traditional data center HBM relies on TSV and interposers, whereas on-device HBM achieves performance breakthroughs through packaging innovations (e.g., vertical wire bonding) and low-power DRAM technology. 

For example, Samsung’s LPW DRAM (Low-Power Wide I/O DRAM) uses similar technology, offering low latency and up to 128GB/s bandwidth while consuming only 1.2pJ/b. It is expected to enter mass production during 2025-2026.

LPW DRAM significantly increases I/O interfaces by stacking LPDDR DRAM to achieve the dual goals of improving performance and reducing power consumption. Its bandwidth can exceed 200GB/s, 166% higher than LPDDR5X. Its power consumption is reduced to 1.9pJ/bit, 54% lower than LPDDR5X. 

存储芯片 8.png

UFS 3.1 has already been widely adopted in vehicles and will gradually iterate to UFS 4.0 and UFS 5.0, while PCIe SSD will become the preferred choice for L3/L4 high-level autonomous vehicles.

At present, high-level autonomous vehicles generally adopt UFS 3.1 storage. As vehicle sensors and computing power advance, higher-specification data transmission solutions are imperative, and UFS 4.0 products will become one of the mainstream options in the future. UFS 3.1 offers a maximum speed of 2.9GB/s, which is dozens of times lower than SSD. The next-generation version UFS 4.0 will reach 4.2GB/s, providing higher speed while reducing power consumption by 30% compared to UFS 3.1. By 2027, UFS 5.0 is expected to arrive with speeds of around 10GB/s, still much lower than SSD, but with the advantages of controllable costs and a stable supply chain.

Given the strong demand for foundation models from both cockpit and autonomous driving, and to ensure sufficient performance headroom, SSD should be adopted instead of the current mainstream UFS (which is not fast enough) or eMMC (which is even slower). Automotive SSD uses the PCIe standard, which offers tremendous flexibility and potential. JESD312 defines the PCIe 4.0 standard, which actually includes multiple rates. 4 lanes is the lowest PCIe 4.0 standard, and 16-lane duplex can reach 64GB/s. PCIe 5.0 was released in 2019, doubling the signaling rate to 32GT/s, with x16 full-duplex bandwidth approaching 128GB/s.   

Currently, both Micron and Samsung offer automotive-grade SSD. Samsung AM9C1 Series ranges from 128GB to 1TB, while Micron 4150AT Series comes in 220GB, 440GB, 900GB, and 1800GB capacities. The 220GB version is suitable for standalone cockpit or intelligent driving, while cockpit-driving integration requires at least 440GB. 

Multi-port BGA SSD can serve as a centralized storage and computing unit in vehicles, connecting via multiple ports to SoCs for cockpit, ADAS, gateways, and more. It efficiently processes and stores different types of data in designated areas. Its benefit of independence ensures that non-core SoCs cannot access critical data without authorization, preventing interference, misidentification, or corruption of core SoC data. This maximizes data transmission isolation and independence and also reduces hardware cost of each SoC for vehicle storage.   

For future L3/L4 high-level autonomous vehicles, PCIe 5.0 x4 + NVMe 2.0 will be the preferred choice for high-performance storage:
Ultra-high-speed transmission: Read speeds up to 14.5GB/s and write speeds up to 13.6GB/s, three times faster than UFS 4.0.
Low latency & high concurrency: Support higher queue depths (QD32+) for parallel processing of multiple data streams.
AI computing optimization: Combined with vehicle SoCs, accelerate AI inference computing to meet requirements of fully autonomous driving.

In autonomous driving applications, PCIe NVMe SSD can cache AI computing data, reducing memory access pressure and improving real-time processing capabilities. For example, Tesla’s FSD system uses a high-speed NVMe solution to store autonomous driving training data to enhance perception and decision-making efficiency.

Synopsys has already launched the world’s first automotive-grade PCIe 5.0 IP solution, which includes PCIe controller, security module, physical layer device (PHY), and verification IP, and complies with ISO 26262 and ISO/SAE 21434 standards. This means PCIe 5.0 will soon be available for automotive applications.

1 Overview of Automotive Memory Chip Industry   
1.1 Classification of Automotive Memory Chips  
Three Major Categories of Memory Devices    
Classification of Memory Chips (Semiconductor Memory)  
Classification of Automotive Memory Chips  
Demand Characteristics of Automotive Memory Chips (1)  
Demand Characteristics of Automotive Memory Chips (2)  
Demand Characteristics of Automotive Memory Chips (3)  
Application of Different Types of Memory Chips in Automotive (1)  
Application of Different Types of Memory Chips in Automotive (2)  

1.2 Global Memory Chip Market and Development Prospects for Automotive Memory  
Global Memory Chip Market Size  
Global Memory Chip Market Pattern (1)  
Global Memory Chip Market Pattern (2)   
Changes in Global Memory Chip Market: AI Drives both Memory Capacity and Performance (1)  
Changes in Global Memory Chip Market: AI Drives both Memory Capacity and Performance (2)   
Changes in Global Memory Chip Market: Application Scale of DRAM by Segment  
Changes in Global Memory Chip Market: DRAM Evolves Towards Higher Bandwidth and Larger Capacity  
Changes in Global Memory Chip Market: Significant Expansion of HBM Market 
Changes in Global Memory Chip Market: Continuous Upgrade of HBM Technical Specifications  
Changes in Global Memory Chip Market: NAND  
Application Trends of Automotive Memory Chips: Huge Room for Increment in Major Application Segments 
Application Trends of Automotive Memory Chips: Forecast of Automotive Memory Chip Output Value in 2030  
Application Trends of Automotive Memory Chips: Capacity of DRAM and NAND Memory in Various Types of Vehicles Will Double   

2 Development Trends of Automotive Memory Chips in Various Application Scenarios  
2.1 Memory Demand Under the Evolution Trend of Autonomous Driving   
Installation Rate of Autonomous Driving (by Level) in China’s Local Passenger Cars, 2024-2030E     
Automotive Advancements Lead to Changes in Storage Conditions (1)  
Automotive Advancements Lead to Changes in Storage Conditions (2)  
AI Empowers the Automotive Sector, and Increases Memory Demand from Intelligent Driving   
Development Trends of Autonomous Driving Systems: Evolution of System Latency and Chip Applications  
Development Trends of Autonomous Driving Systems: Memory Chip Design Based on NVIDIA Thor (1)  
Development Trends of Autonomous Driving Systems: Memory Chip Design Based on NVIDIA Thor (2)  
Development Trends of Autonomous Driving Systems: Memory Chip Design Based on NVIDIA Thor (3)  
Development Trends of Autonomous Driving Systems: Requirements of High-Level Autonomous Driving for Bandwidth and Capacity of Automotive Memory Chips (1)  
Development Trends of Autonomous Driving Systems: Requirements of High-Level Autonomous Driving for Bandwidth and Capacity of Automotive Memory Chips (2)  
Development Trends of Autonomous Driving Systems: Requirements of High-Level Autonomous Driving for Bandwidth and Capacity of Automotive Memory Chips (3)  
Requirements of Autonomous Driving Systems for NAND Memory 
Autonomous Driving Systems Further Introduce Advanced NAND Memory Technology  
Development Trends of Autonomous Driving Algorithms (1)   
...  
Development Trends of Autonomous Driving Algorithms (5)  
Considerations for Vehicle Computing Platforms in the Era of Foundation Models (1)   
Considerations for Vehicle Computing Platforms in the Era of Foundation Models (2)   
...  
Considerations for Onboard Computing Platforms in the Era of Foundation Models (6)   
Challenges to Automotive Memory in the Era of Foundation Models: Computing Chips Should Not Overemphasize Computing Power but Memory Bandwidth    
Analysis of Automotive Foundation Model Computing: DRAM Bandwidth Is Far More Important Than Computing Power (1)   
Analysis of Automotive Foundation Model Computing: DRAM Bandwidth Is Far More Important Than Computing Power (2)   
...  
Analysis of Automotive Foundation Model Computing: DRAM Bandwidth Is Far More Important Than Computing Power (7)  
Analysis of Automotive Foundation Model Computing: Calculation Relationship between DRAM Bandwidth and Time per Token (1)  
Analysis of Automotive Foundation Model Calculation Relationship between DRAM Bandwidth and Time per Token (2): Calculation Steps  
Analysis of Automotive Foundation Model Computing: Calculation Relationship between DRAM Bandwidth and Time per Token (3): Calculation Steps   
Analysis of Automotive Foundation Model Computing: Calculation Relationship between DRAM Bandwidth and Time per Token (4): Calculation Steps   
Analysis of Automotive Foundation Model Computing: Calculation Relationship between DRAM Bandwidth and Time per Token (5): Calculation Steps   
Mass-Produced and Deployed Autonomous Driving SoCs: Autonomous Driving SoC Platforms Installed in China’s Local Passenger Cars, 2022-2024  
Mass-Produced and Deployed Autonomous Driving SoCs: Performance Parameters and Supported DRAM Bandwidth (1)   
Mass-Produced and Deployed Autonomous Driving SoCs: Performance Parameters and Supported DRAM Bandwidth (2)   
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 1  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 2 (1)  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 2 (2)  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 2 (3)  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 3 (1)  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 3 (2)  
L2.5 Highway NOA Computing Platform and Memory Chip Dismantling 3 (3)  
L2.9 Urban NOA Computing Platform and Memory Chip Dismantling 4  
L2.9 Urban NOA Computing Platform and Memory Chip Dismantling 5   
L2.9 Urban NOA Computing Platform and Memory Chip Dismantling 6 (1)  
L2.9 Urban NOA Computing Platform and Memory Chip Dismantling 6 (2)  
L2.9 Urban NOA Computing Platform and Memory Chip Dismantling 6 (3)  

2.2 Memory Demand Under the Trend of Edge AI Deployment in Cockpit  
Edge AI Deployment in Vehicles: System Framework    
Edge AI Deployment in Vehicles: Outlook for AI Application in Vehicle Intelligence  
Edge AI Deployment in Vehicles: Platform Capabilities Required for AI Deployment   
OEMs Accelerate Edge AI Deployment 1  
OEMs Accelerate Edge AI Deployment 2 (1)  
OEMs Accelerate Edge AI Deployment 2 (2)  
OEMs Accelerate Edge AI Deployment 3  
OEMs Accelerate Edge AI Deployment 4 (1)  
OEMs Accelerate Edge AI Deployment 4 (2)  
OEMs Accelerate Edge AI Deployment 4 (3)  
OEMs Accelerate Edge AI Deployment 5 (1)  
OEMs Accelerate Edge AI Deployment 5 (2)  
OEMs Accelerate Edge AI Deployment 5 (3)  
Edge AI Deployment in Cockpit (1)  
Edge AI Deployment in Cockpit (2)  
Edge AI Deployment in Cockpit (3)  
Cockpit AI Deployment (1)  
Cockpit AI Deployment (2)   
Mass-Produced and Deployed Cockpit SoCs: Installations of Cockpit SoC Platforms in China’s Local Passenger Cars, 2022-2024   
Mass-Produced and Deployed Cockpit SoCs: Performance Parameters and Supported DRAM Bandwidth (1)  
Mass-Produced and Deployed Cockpit SoCs: Performance Parameters and Supported DRAM Bandwidth (2)  
Mass-Produced and Deployed Cockpit SoCs: Performance Parameters and Supported DRAM Bandwidth (3)   
Mass-Produced and Deployed Cockpit SoCs: Performance Parameters and Supported DRAM Bandwidth (4)  
Application Cases of Cockpit DRAM (1)  
Application Cases of Cockpit DRAM (2)  
Application Cases of Cockpit DRAM (3)  
Application Cases of Cockpit DRAM (4)  
Application Cases of Cockpit DRAM (5)  

2.3 Memory Demand of Central Supercomputing Under EEA Evolution  
Status Quo of EEA Deployment, and Five-Year Trend Forecast   
Status Quo of EEA Deployment, and Five-Year Trend Forecast (Appendix)   
Three Development Stages Under EEA Evolution: Multi-Board, One-Board, One-Chip (1)  
Three Development Stages Under EEA Evolution: Multi-Board, One-Board, One-Chip (2)   
Multi-Domain DCU - Typical Multi-Board Solution  
Central Computing CCU - Typical One-Board Solution (1)  
Central Computing CCU - Typical One-Board Solution (2)  
Central Computing CCU - Typical One-Chip Solution (1)  
Central Computing CCU - Typical One-Chip Solution (2)  
Central Computing CCU - Development Directions of Central + Zonal Architecture (1)  
Central Computing CCU - Development Directions of Central + Zonal Architecture (2)  
...  
Central Computing CCU - Development Directions of Central + Zonal Architecture (6)  
Under the Trend of Centralized EEA, NAND Memory Requirement Will Reach TB Level in 2025  

2.4 Memory Demand Under the Trend of Automotive Data Recording Compliance    
Policies and Standards Concerning Automotive Event Data Recorder (EDR) 
Automotive Event Data Recorder (EDR) System Design   
Automotive Event Data Recorder (EDR) Generates GB-Level Memory Demand  
Core Memory Demand of Automotive Event Data Recorder (EDR)     
New Memory for Automotive Event Data Recorder (EDR)    

2.5 Summary of Automotive Memory Application Trends   
Memory Demand of Submodules of Intelligent Vehicles  
Sources of In-Vehicle Data  
Application and Challenges of Automotive High-Performance NAND Memory Technology in Intelligent Cockpit and Autonomous Driving    
Directions of Automotive High-Performance NAND Memory Technology Change  
Application of High-Performance NAND Memory Products in Automotive Market    
Analysis of Automotive High-Performance Memory Demand (1)   
Analysis of Automotive High-Performance Memory Demand (2)  
Analysis of Automotive High-Performance Memory Demand (3)  
Analysis of Automotive High-Performance Memory Demand (4)    
Outlook for Automotive High-Performance Memory Cooperation Models (1)   
Outlook for Automotive High-Performance Memory Cooperation Models (2)  
Status Quo and Trends of Automotive Memory Application by OEMs (1)   
Status Quo and Trends of Automotive Memory Application by OEMs (2)  
...  
Status Quo and Trends of Automotive Memory Application by OEMs (8) 

3 Production, Testing, Certification, and Localization Progress of Automotive Memory Chips   
3.1 Classification of Automotive Memory Chip Vendors   
Automotive Memory Chip Industry Chain  
Automotive Memory Chip Industry Chain and Market Pattern 
Manufacturing Process of Automotive Memory Chips   
Packaging and Testing Process of Automotive Memory Chips  

3.2 Manufacturing and Packaging & Testing of Automotive Memory Chips  
Evolution Trends of Chip Packaging Technology (1)  
Evolution Trends of Chip Packaging Technology (2)  
Evolution Trends of Chip Packaging Technology (3)   
Major Advanced Packaging Platforms Worldwide   
Technology Deployment of Global Advanced Packaging Companies  
Top 10 Global Outsourced Semiconductor Assembly and Test (OSAT) Rankings  
Automotive Chip Packaging Processes (1)  
Automotive Chip Packaging Processes (2)  
Advanced Packaging Companies for Automotive Memory Chips   
Common Packaging Technologies for Automotive Memory Chips (1)  
Common Packaging Technologies for Automotive Memory Chips (2)  
...  
Common Packaging Technologies for Automotive Memory Chips (6)  
Advantages of System-in-Package (SiP) in Automotive Application 
Key Technologies and Implementation Modes of System-in-Package (SiP)  
Application Characteristics of System-in-Package (SiP) in New Energy Vehicles  
Automotive Chip Packaging Process: Chiplet Offers Flexibility and IP Reusability  
Summary of Automotive Memory Chip Manufacturing and Packaging Processes (1)  
Summary of Automotive Memory Chip Manufacturing and Packaging Processes (2)  
...  
Summary of Automotive Memory Chip Manufacturing and Packaging Processes (8)  

3.3 Capacity Layout of Automotive Memory Chip Wafer Manufacturers  
Business Models of Automotive Memory Chip Wafer Manufacturers  
DRAM Products and Technology Trends of Major Wafer Manufacturers (1)  
DRAM Products and Technology Trends of Major Wafer Manufacturers (2)  
DRAM Products and Technology Trends of Major Wafer Manufacturers (3)   
Comparison of Manufacturing Processes and Packaging Formats between Automotive Memory Chip Wafer Manufacturers (1)  
Comparison of Manufacturing Processes and Packaging Formats between Automotive Memory Chip Wafer Manufacturers (2)   
Capacity Layout of Automotive Memory Chip Wafer Manufacturers (1)  
Capacity Layout of Automotive Memory Chip Wafer Manufacturers (2)  
Capacity Layout of Automotive Memory Chip Wafer Manufacturers (3)  
Capacity Layout of Automotive Memory Chip Wafer Manufacturers (4)  

3.4 Automotive Memory Chip Certification Standard System  
Supply Chain Entry and Certification Process for Automotive Memory Chips  
Automotive Standards and Certification Specifications for Automotive Memory Chips (1)   
Automotive Standards and Certification Specifications for Automotive Memory Chips (2)  
Automotive Supply Chain Certification Standard System and Specifications Required for Automotive Chips   
Certification Standard System for Automotive Chips: AEC-Q100 Automotive Reliability Test Items (1)  
Certification Standard System for Automotive Chips: AEC-Q100 Automotive Reliability Test Items (2)   
Certification Standard System for Automotive Chips: ISO 26262 Functional Safety Level Certification (1)  
Certification Standard System for Automotive Chips: ISO 26262 Functional Safety Level Certification (2)  
Certification Standard System for Automotive Chips: ISO 26262 Functional Safety Level Certification (3)  
Certification Standard System for Automotive Chips: ISO 26262 Functional Safety Level Certification (4)  
Safety Requirements for Embedded Flash Memory Under ISO 26262 Functional Safety Standards (1)  
Safety Requirements for Embedded Flash Memory Under ISO 26262 Functional Safety Standards (2)  
Safety Requirements for Embedded Flash Memory Under ISO 26262 Functional Safety Standards: Comparison between Embedded Flash Memory and Off-chip Flash Memory    
Automotive Chip Certification System: IATF 16949 Quality Management System Certification (1)  
Automotive Chip Certification System: IATF 16949 Quality Management System Certification (2)  
Automotive Chip Certification System: IATF 16949 Quality Management System Certification (3)  
Automotive Chip Certification System: ASPICE Automotive Software Development Standards (1)  
Automotive Chip Certification System: ASPICE Automotive Software Development Standards (2)  
Summary of Certifications for Automotive Memory Chips (1)  
Summary of Certifications for Automotive Memory Chips (2)  

3.5 Localization Level and Progress of Automotive Memory Chips  
Status Quo of Competition among Chinese Memory Chip Vendors     
Four Types of Chinese Memory Chip Vendors    
Details of 30 Chinese Memory and Main Control Chip Vendors (1)   
Details of 30 Chinese Memory and Main Control Chip Vendors (2)  
...  
Details of 30 Chinese Memory and Main Control Chip Vendors (5)  
Summary of Revenues, Gross Margins, and Businesses of Chinese Memory Chip Vendors (1)    
...  
Summary of Revenues, Gross Margins, and Businesses of Chinese Memory Chip Vendors (6)   
Chinese Vendors’ Automotive DRAM Products (DDR)  
Overseas Vendors’ Automotive DRAM Products (LPDDR)   
Chinese Vendors’ Automotive DRAM Products (LPDDR)  
Overseas Vendors’ Automotive DRAM Products (GDDR)  
Overseas Vendors’ Automotive DRAM Products (HBM)  
Chinese Vendors’ Automotive eMMC Products (1)   
Chinese Vendors’ Automotive eMMC Products (2)   
Overseas Vendors’ Automotive eMMC Products  
Chinese Vendors’ Automotive UFS Products   
Chinese Vendors’ Automotive NAND Flash Products    
Overseas Vendors’ Automotive UFS Products  
Overseas and Chinese Vendors’ Automotive SSD Products   

4 Technology Trends of Automotive Memory Chips by Product Segment  
4.1 Application Trends of Automotive DRAM: LPDDR5X  
In the Next Stage, Automotive DRAM Will Focus on Promoting LPDDR5X   
Typical Cases of Application of SoC Platform in LPDDR5X  
Next-Generation LPDDR6   

4.2 Application Trends of Automotive DRAM: GDDR6/GDDR7  
GDDR6's High Energy Consumption and Cost Make It Less Preferred by OEMs  
GDDR7 Standard of JEDEC Solid State Technology Association
GDDR7 Cases (1)   
GDDR7 Cases (2)   
GDDR7 May Become the Mainstream Choice for Next-Generation Computing Platforms of OEMs 

4.3 Application Trends of Automotive DRAM: High-Bandwidth Memory (HBM)
HBM (1)   
HBM (2)   
HBM: Production Process and Cost  
HBM: DRAM and GPU Packaging, for AI Applications  
HBM Is Primarily Used in High-Performance AI Computing Servers  
Role of HBM in Transformer AI Models  
Global Usage of HBM in Major AI Chips  
Competitive Pattern of Global HBM Vendors  
Performance Evolution and Development History of HBM  
HBM Technology Iteration (1)  
HBM Technology Iteration (2)  
HBM Technology Iteration (3)  
HBM Technology Iteration (4)  
New HBM Development Trend 1 (1)  
New HBM Development Trend 1 (2)  
New HBM Development Trend 2 (1)  
New HBM Development Trend 2 (2)  
Discussion 1 on HBM Application in Automotive  
Discussion 2 on HBM Application in Automotive 
Discussion 3 on HBM Application in Automotive  
Discussion 4 on HBM Application in Automotive  

4.4 Application Trends of Automotive Flash Memory: UFS3.1/UFS4.0  
Automotive UFS 4.0  
UFS 4.0 Case 
UFS 4.1 Case 

4.5 Application Trends of Automotive Flash Memory: PCIe Solid-State Drive (SSD)  
Purposes of PCIe  
PCIe Standard Specifications  
PCIe System Architecture   
High-Bandwidth, Low-Latency PCIe Bus Is A Key Future Direction for Automotive Memory   
PCIe-based CXL Memory Technology Will Be Promoted in the Automotive Industry    
Evolution of Automotive EEA Drives Demand for PCIe SSD Memory
Multi-Port BGA PCIe SSD Solution for Central Computers   
PCIe SSD Deployment in Vehicles (1)  
PCIe SSD Deployment in Vehicles (2)  
Deployment 1 of PCIe SSD in Vehicles  
Deployment 2 of PCIe SSD in Vehicles    
Deployment 3 of PCIe SSD in Vehicles  

4.6 Automotive Memory Trends: In-Memory Computing     
Development Trends of Automotive Memory Market: Memory Wall (1)  
Development Trends of Automotive Memory Market: Memory Wall (2)   
Conceptual Diagram of In-Memory Computing Technology   
Technical Solutions of Generalized In-Memory Computing    
PIM (Processing-in-Memory) Is A Hot Spot in Next-Phase Development   
True CIM (Computing-in-Memory)     
CIM Mainly Faces the Memory Medium Technology Path Selection
Chinese In-Memory Computing Chip Companies and Their Technology Path Selection   
Significance of "In-Memory Computing" to Autonomous Driving (1)  
Significance of "In-Memory Computing" to Autonomous Driving (2)  
Significance of "In-Memory Computing" to Autonomous Driving (3)   
"In-Memory Computing" SoCs (1)  
"In-Memory Computing" SoCs (2)   
Memory Solutions for "In-Memory Computing" 

5 Automotive Memory Chip Wafer Manufacturers  
5.1 CXMT  
Business Overview and Capacity Layout   
DRAM Technology Roadmap  
Automotive LPDDR4X DRAM  
Automotive LPDDR5 DRAM  
DDR4 DRAM 
DRAM Modules  
Analysis of G4 DDR5 and Comparison between Inside and Outside

5.2 YMTC 
Business Overview and Capacity Layout  
3D NAND Technology  
232-Layer QLC 3D NAND  
3D NAND Technology Iteration  
Launch of Memory Products Based on Xtacking? 4.0 Architecture (1)  
Launch of Memory Products Based on Xtacking? 4.0 Architecture (2)  
Launch of Memory Products Based on Xtacking? 4.0 Architecture (3)  
Automotive NAND Flash   
UFS 3.1  
Layout in Automotive Electronics Sector  
Subsidiary: Yangtze Mason Semiconductor  
Yangtze Mason Semiconductor’s eMMC Products  
Yangtze Mason Semiconductor’s Self-Built Packaging Plant  
Yangtze Mason Semiconductor’s Automotive SSD  
Yangtze Mason Semiconductor’s Industrial/Automotive SSD  
Yangtze Mason Semiconductor’s Automotive eMMC 5.1  
Yangtze Mason Semiconductor’s Automotive LPDDR4X   
Subsidiary: Wuhan Xinxin Semiconductor Manufacturing Co., Ltd.   

5.3 Samsung 
Operation, 2024    
Operation of Memory Business, 2024
Automotive Memory Chip Capacity Layout 
DRAM and NAND Roadmap  
Automotive Memory Product Line  
eUFS Evolution Planning
Automotive UFS 3.1 Memory Solutions in Mass Production   
PCIe SSD Evolution Plan 
PCIe 5.0 SSD Product Portfolio  
PCIe 5.0 SSD  
Automotive SSD - AutoSSD  
GDDR Memory Evolution Plan  
Launch of 24Gb GDDR7 DRAM for Next-Gen AI Computing  
LPDDR Memory Chip Evolution Plan  
16GB LPDDR5X + 1TB UFS 3.1 Multi-Chip Packaging Technology  
Automotive LPDDR5X  
DDR Memory Chip Evolution Plan  
Samsung Is Developing DDR6 DRAM Using MSAP Technology 
HBM Chip Evolution Plan   
Architecture of PIM-enabled High Bandwidth Memory (HBM-PIM)?
Strategic Partnership with SemiDrive  
Samsung and STMicroelectronics Launched Embedded Phase-Change Memory (ePCM) Technology  
Samsung Has Used YMTC’s Patented Technology Starting from V10  

5.4 SK Hynix  
Operation, 2024 (1)  
Operation, 2024 (2)   
Automotive Memory Chip Capacity Layout 
Automotive Memory Product Line  
Memory Chip Technology (1)  
Memory Chip Technology (2)  
LPDDR Memory Chip Evolution Plan  
Automotive LPDDR5  
HBM Chip Evolution Plan   
Launch of HBM3E   
Automotive eMMC 5.1   
UFS Memory Chip Evolution Plan  
UFS 3.1 Memory Chip 
GDDR Memory Evolution Plan  
AiM (Accelerator-in-Memory) Architecture  
GDDR7 Memory  
World’s First 12-Layer HBM4 Samples Shipped, Mass Produced in H2 
Application Scenarios of Automotive Memory Chips

5.5 Micron  
Operation of Memory Business, FY2025Q1
Automotive Memory Chip Capacity Layout 
NAND and SSD Product Lines
G9 NAND Technology  
QLC NAND Technology  
4150AT Automotive SSD  
LPDDR Memory Chip Evolution Plan  
Automotive LPDDR5X  
Automotive UFS 3.1  
Automotive e.MMC 5.1  
Automotive NOR Flash Products  
Application Scenarios of Automotive Memory Chips 
Delivery of 6th-Gen DDR5 Samples (1γ DRAM Node)  

5.6 KIOXIA (Toshiba)  
Successfully Being Listed in 2024  
Operation of Memory Business, FY2024
Automotive Memory Chip Capacity Layout 
BiCS FLASH 3D NAND Technology (1)  
BiCS FLASH 3D NAND Technology (2)  
BiCS FLASH 3D NAND Technology (3)  
BiCS FLASH 3D NAND Technology (4)  
Automotive Memory Products  
Application Scenarios of Automotive Memory Products
Automotive UFS 3.1 / 2.1 & e-MMC  
UFS 4.0 Automotive Memory (1)  
UFS 4.0 Automotive Memory (2)   

5.7 Western Digital  
Operation, FY2025Q2 
Automotive Memory Product Line (1)  
Automotive Memory Product Line (2)  
Automotive Memory Product Line (3)  
UFS Memory Chip Evolution Plan  
UFS 3.1  
UFS  
eMMC Embedded Flash Evolution Plan  
UFS (1)  
UFS (2)  
IX SN530 Industry-Grade SSD  

5.8 Silicon Motion  
Operation, 2024  
Automotive Memory Solutions  
Automotive Memory Product Line (1)  
Automotive Memory Product Line (2)  
UFS Memory Chip Evolution Plan  
PCIe SSD Evolution Plan  
Automotive PCIe NVMe SSD Controller  
Automotive SSD Controller (1)  
Automotive SSD Controller (2)  
Comprehensive Automotive Memory Solutions (1)  
Comprehensive Automotive Memory Solutions (2)  
Comprehensive Automotive Sto Memory rage Solutions (3)  
Automotive Single-Chip Memory Solutions   
Ferri Series Automotive Memory Solutions  

5.9 Fujitsu  
Rebranded as RAMXEED, Focusing on High-Performance Memory Business  
Operation, FY2024Q3 
Automotive Memory Chip Capacity Layout 
Building Three Product Lineups: FRAM, ReRAM, and NRAM  
Summary of FRAM’s Technical Advantages   
Parameter Comparison between EEPROM, NOR Flash, FRAM, NRAM, and ReRAM  
Wide Application Fields of FRAM  
FRAM Applications in Automotive Electronics  
FRAM Chip Evolution Plan  
Technical Features of Automotive FRAM Products  
Application Scenarios of Automotive FRAM (1)  
Application Scenarios of Automotive FRAM (2)   
4Mbit FRAM Memory, High-Capacity FRAM Empowering Future Vehicles  
Launch of New NRAM, Combining Advantages of FRAM and NOR Flash  
New Non-Volatile ReRAM (Resistive RAM)  
Next-Generation Products  
Future Plan  

5.10 Neo Semiconductor  
3D DRAM Technology (1)  
3D DRAM Technology (2)  
3D DRAM Technology (3)  
X-NAND (3D NAND Flash)  
3D X-DRAM  
3D X-AI (3D Memory with AI Execution)  

5.11 Nanya Technology  
Business Scope and Capacity Layout  
Automotive DDR2 Series  
Automotive DDR3 1Gb Series  
Automotive DDR3 2Gb Series  
Automotive DDR3 4Gb/8Gb Series  
Automotive LPDDR2 Series  
Automotive LPDDR4 Series  
Automotive LPDDR4X Series  
Automotive MCP Series

6 Automotive Memory Chip Product Manufacturers  
6.1 GigaDevice  
Revenue, Q1-Q3 2024  
Automotive Memory Chip Products, Certification, and Application (1)  
Automotive Memory Chip Products, Certification, and Application (2)  
NOR Flash Product Series  
Automotive SPI NOR Flash (1)  
Automotive SPI NOR Flash (2)  
Automotive SPI NAND Flash  
Automotive Parallel NAND Flash  
DRAM DDR4 Products  

6.2 Ingenic  
Business Overview  
Overview of Business Segments 
Revenue, Q1-Q3 2024  
LPDDR Memory Chip Evolution Plan   
DDR Memory Chip Evolution Plan  
Automotive SRAM Products  
eMMC Products  

6.3 Xi'an UniIC  
Business Overview  
Main Expansion Controller Technology Solution for CXL Memory
Embedded DRAM Technology (SeDRAM?) Solution   
DRAM KGD Solution  
New-generation DRAM KGD Product Series  
Automotive Memory Chip Solutions  
Automotive Ultra-low-power LPDDR4X Memory  
Automotive DDR3   

6.4 Montage Technology  
Revenue, 2024  
CXL Technology Ecosystem  
Automotive DDR4 RCD Chip (Core Memory Product)   
DDR5 Memory Interface Chip (RCD/MDB)  
DDR5 Memory Interface Chip Has Development Potential   

6.5 Longsys  
Business Overview  
Revenue, 2024  
Product Lineup  
Complete the Memory Industry Chain Layout (1)  
Complete the Memory Industry Chain Layout (2)    
Comprehensive Quality Management to Create High-Quality Automotive Memory  
Changes in Business Model (1)   
Changes in Business Model (2)  
Automotive Memory Chip Product Lineup   
Automotive SPI NAND Flash  
Self-development of Small- and Medium-capacity Memory Chips  
UFS Evolution Plan  
FORESEE Automotive UFS   
eMMC Evolution Plan  
Self-development of Memory Main Control Chips and SLC NAND Flash Chips  
FORESEE Vehicle Monitoring SSD (PCIe 4.0/5.0)  
FORESEE Automotive LPDDR4X (DRAM cache)  
Lexar? JumpDrive? Dashcam USB Drive  
Latest Products  

6.6 XMC
Business Overview 
NOR Flash Foundry Business
NOR Flash Products
Automotive SPI NOR Flash 

6.7 Giantec Semiconductor
Business Overview
Revenue, 2024 
Core Technologies
Automotive EEPROM Product Series
Automotive SPI NOR Flash Memory Chips
Automotive EEPROM Products
Automotive EEPROM Applications
SPD Product Series
NOR Flash

6.8 Pramor Semiconductor
Business Overview
Revenue, 2024
Automotive NOR Flash Product Line
Automotive NOR Flash
Automotive EEPROM Product Line
Automotive EEPROM

6.9 Fudan Microelectronics
Business Overview
Revenue, 2024
Memory Product Line
Automotive FM Series EEPROM Product Roadmap
FM Series EEPROM Products (I2C Automotive)
FM Series EEPROM Products (SPI Automotive)
Automotive EEPROM Chip FM24C512DA1 Passed Automotive Certification
Automotive NOR Flash Product Line
Automotive NAND Flash Product Line
Automotive NAND Flash 

6.10 Macronix
Business Overview
Automotive NOR Flash Product Line 
Automotive NOR Flash MX25L12833F Compatible with NVIDIA Thor
Automotive NAND Product Line 
Armor Flash Memory Applied in NVIDIA DRIVE AGX Xavier and Pegasus Platform
Automotive e.MMC Memory Chips

6.11 Biwin Storage
Business Overview
Automotive Memory Solutions (1)
Automotive Memory Solutions (2)
Automotive Memory Product Line 
Automotive LPDDR Evolution Plan
uMCP Chips
Automotive Memory SATA C1008 SSD (1)
Automotive Memory SATA C1008 SSD (2)
Automotive Memory SATA C1008 SSD (3)
Automotive Memory SATA C1008 SSD (4)
Automotive BS321 Series 4TB High-Capacity SATA SSD (1)
Automotive BS321 Series 4TB High-Capacity SATA SSD (2)
Automotive SPI NOR Flash
Automotive UFS
Automotive Memory SATA C1004 SSD
Automotive BGA SSD
Automotive PCIe BGA SSD
Self-Developed eMMC Main Control Chip
Competitive Edges: R&D, Packaging and Testing Integrated Business Model (1)
Competitive Edges: R&D, Packaging and Testing Integrated Business Model (2)  

6.12 Winbond
Automotive Memory Products
Automotive Memory Solutions
Automotive Memory Products: SDR SDRAM
Automotive Memory Products: DDR SDRAM
Automotive Memory Products: DDR2 SDRAM
Automotive Memory Products: DDR3 SDRAM
Automotive Memory Products: LPDDR4 SDRAM
Application Scenarios of Automotive DDR3 Memory

6.13 SanDisk
Automotive Memory Product Layout
Automotive UFS
Automotive e.MMC
Automotive SSD
Launch Of Automotive UFS 4.1 (1)
Launch Of Automotive UFS 4.1 (2)

6.14 YEESTOR
Business Overview
Industrial and Automotive eMMC Products
Automotive eMMC Memory Chips
Features of Automotive eMMC Memory Chips
Automotive Embedded Memory eMMC 5.1
Automotive CXL SSD
Next-Generation Automotive Memory Products

6.15 Dosilicon
Memory Chip Products
Memory Chip Products: NAND
Memory Chip Products: DRAM
Memory Chip Products: NOR Flash
Automotive Memory Layout
Automotive NAND Flash 
Automotive NOR Flash
Automotive LPDDR4X
Competitive Edges

6.16 KXW
Business Overview
Industry Upstream and Downstream 
Automotive Memory Solutions
Automotive eMMC 5.1 Embedded Memory
Automotive UFS 3.1 Memory

6.17 JingCun Technology
Business Overview
Automotive Memory: LPDDR4/4X
Automotive Memory: eMMC 5.0/5.1
Brand Advantages (1)
Brand Advantages (2)

6.18 Phison
Business Overview
Automotive Memory Solutions
Automotive eMMC
Automotive BGA SSD (1)
Automotive BGA SSD (2)
Automotive UFS (1)
Automotive UFS (2)
Automotive SD/microSD
Automotive Memory Solutions
Strategic Partnership with SemiDrive to Co-Develop Next-Generation Automotive Platforms

6.19 Belling
Automotive EEPROM Chips
Automotive EEPROM Products

6.20 Gencun Technology
Business Overview
Standalone MRAM

Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025

Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved. From 2D+CNN small models to BEV+Transformer found...

48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号