Self-driving Vehicle Actuator Industry Report, 2016
  • May 2016
  • Hard Copy
  • USD $2,300
  • Pages:96
  • Single User License
    (PDF Unprintable)       
  • USD $2,100
  • Code: ZYW226
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $3,300
  • Hard Copy + Single User License
  • USD $2,500
      

The report mainly highlights the following:
1. ADAS and self-driving vehicle chassis and braking system
2. Traditional braking system
3. Braking system for new energy vehicles
4. Global EPS Industry
5. Global braking system and EPS manufacturers

As far as ADAS is concerned, a simple alarm is not enough, and even at the critical moment, active braking system, active deceleration or steering system are needed, for machines are more reliable than people. And controllers and actuators are thus introduced. An actuator is very simple, consisting of brake caliper, steering gear, and air valve, while a controller involves ETC (Electric Throttle Control) and EPS (Electric Power Steering). The brake system is very complicated, and the brake system for the ordinary gasoline and diesel passenger vehicle is controlled by hydraulic system and vacuum servo. But for passenger vehicles, passive safety is superior to active safety. Hence, ESP (ESC, Electronic Stability Control) needs standard configuration, and the brake control system is ESP, which can also control ETC.

To enable active ADAS and self-driving, deep communication between ADAS and controllers is indispensable, which requires controller manufacturers to provide deep support. Of course, they can also create a new system to bypass the original controller. However, the original controller has gained safety certification for scores of years, and the new system has not been certified, which greatly adds costs and complexity. Moreover, it is not realistic for vehicles to be mass-produced. Therefore, it is necessary to win the great support from controller manufacturers. But these controller manufacturers have their own ADAS, unwilling to give up this market. As a result, controller manufacturers do not make available some ports or provide support, so that customers are forced to choose their full set of ADAS. So we can see that the whole ADAS, including sensor algorithm, of Chang’an and Geely is all from Bosch, which has a great impact on China-made sensor manufacturers.

Given the ESC system is paramount, most OEMs have related technology. Various names for ESC, hence, have sprung up. Although the prices for these ESC systems are higher than those of Bosch and Continental, manufacturers still use them to maintain their own independence, with Hyundai, for example, adopting Mando’s ESC system. It takes more than 20 years to develop a new ESC system, during which period large amount of capital and practice cost will be incurred.

Most electric vehicles still adopt the braking system of fuel vehicles and gain additional braking power with EVP or Bosch iBooster. As for these electric vehicles, ESC is still the master controller of braking system. But things have changed. As electric vehicles can, through AC motor, achieve reverse deceleration and recover braking energy, the load of EV braking system reduces considerably. And the new technology drive-by-wire braking system can thus be used.

Drive-by-wire braking system has been extensively used in F1cars, and is replaced when the driving range reaches less than 2,000 km, which causes high costs. Its braking sensitivity is much higher than that of traditional braking systems. Moreover, its flexibility increases dramatically. Hence, the braking system is very practical in the field of ADAS and self-driving. This is why Tesla can achieve intelligentization more easily. Drive-by-wire braking system substitutes ESC system or TCS (traction control system), which allows vehicle manufacturers to get rid of dependence on ESC manufacturers. Tesla Model S, Porsche 918 Spyder, and Audi R8-ETRON adopt this design. There are two systems inside the car: one is traditional front wheel hydraulic brake without EVP, which has the function of ABS; the other is rear-wheel drive-by-wire braking system, which uses electrical signal and motor to control brake calipers.

The disadvantages of drive-by-wire braking system are also evident: first, small braking force due to limited motor power; second, high requirements for heat resistance of brake discs. Porsche 918 Spyder and Audi R8-ETRON adopt ceramic brake discs while Tesla uses high-grade ITT brake discs. Third, due to small volume left for braking motor, only permanent magnet motor can be used. And when you put on brakes, permanent magnet has long been working under the high temperature, thus leading to demagnetization. The reliability of drive-by-wire braking system is yet to be tested. At present, the system, which incurs high costs, can not be used as main braking system but only as auxiliary brake.

In the field of EPS, things get better. China acquired Nexteer, and some enterprises can produce low-end C-EPS. However, the future development of EPS is targeted at R-EPS. There is still an obvious gap between at home and abroad. EPS market is highly concentrated, with the top four manufacturers holding a combined market share of over 75%. The market share of Jtekt exceeded one third. After selling ZF Lenksysteme, ZF still has TRW steering business, reflecting that it has placed emphasis on steering system.

For fuel vehicle design, if you want to develop ADAS or self-driving, it may well be the fastest and most cost-effective way to cooperate with Bosch rather than Continental, whose ESC system is rare in China. As for independent sensor design companies, it is the best choice to partner with manufacturers capable of developing ESC braking system, and the same is true of international companies. Take Sweden-based Autoliv, which invested JPY30 billion in April 2016 to cooperate with Japan’s Nissin Kyogo. With regard to China-made vehicle design, we suggest the cooperation with South Korean Mando

In terms of hybrid electric vehicle design, it is best way to adopt ZFTRW IBC and Continental MK C1 to develop ADAS or self-driving. At the early stage of promotion. Continental and ZF are eager to get support from vehicle manufacturers. Moreover, due to its high integration level, the self-driving function can easily be set in drive-by-wire hydraulic brake.

For electric vehicle design, if you adopt permanent magnet motor, given the narrow working range and poor high-temperature resistance of permanent magnet motor, braking system cannot depends too much on the opposing torque of the motor, hence the need to use the powerful booster brake system like Bosch iBooster. If you use AC induction motor, braking system can rely heavily on the opposing torque of the motor, and rear wheel can use the most advanced EMB, or the real drive-by-wire brake.

1 Braking and Steering System
1.1 Electronic Architecture of Self-driving Cars
1.2 Overview of ADAS-related Chassis
1.3 Structure of Typical Braking System
1.3.1 Principle of Braking System
1.3.2 Magnetic Valve of Braking System 
1.3.3 Vacuum Booster Pump
1.4 EV Braking System
1.5 Brake by Wire
1.6 Drive-by-wire Hydraulic Brake System for HEV
1.7Overview of Mercedes-Benz SBC Braking System
1.7.1 Principle of Mercedes-Benz Sensortronic Brake Control (SBC) 
1.7.2 Structure of Mercedes-Benz SBC Braking System
1.7.3 Fallback Mode of Mercedes-Benz SBC Braking System
1.7.4 Actuator Loop for Mercedes-Benz SBC Braking System
1.8 Toyota EBC System
1.8.1 Exterior Structure of Toyota EBC System
1.8.2 Interior Structure of Toyota EBC System
1.8.3 Block Diagram for Toyota EBC System Circuit
1.8.4 Connection Diagram for Toyota EBC Hydraulic System and Circuitry
1.9 Drive-by-wire Brakes 
1.9.1 Drive-by-wire Brakes of EV Rear Wheel
1.9.2 Drive-by-wire Braking System for Heavy-duty Trucks
1.9.3 Circuit Diagram for Typical Brake-By-Wire System
1.10 ABS 
1.10.1 Location of ABS
1.10.2 Internal Architecture of ABS
1.10.3 ABS History and Principle
1.10.4 ABS Evolving into ESP 
1.11 Structure of ESP (ESC)
1.11.1 Structure of Audi A4L ESP
1.11.2 ESP Work Analysis
1.11.3 Components of Audi A4L ESP
1.11.4 Distribution of Audi A4L ESP
1.11.5 Development Direction of ESP (ESC)
1.12 Overview of EPS
1.12.1 Structure of R-EPS and P-EPS
1.12.2 R-EPS Analysis
1.13 Overview of Steering-by-wire System
1.14 Steering-by-wire System Needs to Simulate Force-feedback System
1.15 Structure of Electric Throttle Control
1.16 Development of Electric Throttle Control
1.17 Overview of Non-contact Electric Throttle Control

2 Braking System and EPS Industry
2.1 Overview of Automotive Braking System
2.2 Supply Relationship between OEMs and Brake Suppliers
2.3 ESC Terms
2.4 Market Share of Global ESC Companies 
2.5 Supply Relationship between OEMs and EPS Suppliers
2.6 Global EPS Market Share

3 Braking System and EPS Manufacturers
3.1 Continental Automotive 
3.2 ZFTRW 
3.3 Bosch 
3.4 Mando
3.5 Nexteer
3.6 BWI Group                   
3.7 Zhejiang Asia-Pacific Mechanical & Electronic
3.8 Akebono                   
3.9 Nissin Kyogo
3.10 ThyssenKrupp
3.11 Advics
3.12 Jtekt
3.13 NSK
3.14 Haldex
3.15 Vie Science & Technology
3.16 Tuopu Group
3.17 Hitachi Automotive Systems
 

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

L3/L4 Autonomous Driving and Startups Research Report, 2024

The favorable policies for the autonomous driving industry will speed up the commercialization of L3/L4. In the second half of 2023, China introduced a range of policies concerning autonomous drivin...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024

At present, EEA is developing from the distributed type to domain centralization and cross-domain fusion. The trend for internal and external integration of domain controllers, especially the integrat...

Global and China Automotive Operating System (OS) Industry Report, 2023-2024

Chinese operating systems start to work hard In 2023, Chinese providers such as Huawei, Banma Zhixing, Xiaomi, and NIO made efforts in operating system market, launched different versions with competi...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号