Self-driving Vehicle Actuator Industry Report, 2016
  • May 2016
  • Hard Copy
  • USD $2,300
  • Pages:96
  • Single User License
    (PDF Unprintable)       
  • USD $2,100
  • Code: ZYW226
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $3,300
  • Hard Copy + Single User License
  • USD $2,500
      

The report mainly highlights the following:
1. ADAS and self-driving vehicle chassis and braking system
2. Traditional braking system
3. Braking system for new energy vehicles
4. Global EPS Industry
5. Global braking system and EPS manufacturers

As far as ADAS is concerned, a simple alarm is not enough, and even at the critical moment, active braking system, active deceleration or steering system are needed, for machines are more reliable than people. And controllers and actuators are thus introduced. An actuator is very simple, consisting of brake caliper, steering gear, and air valve, while a controller involves ETC (Electric Throttle Control) and EPS (Electric Power Steering). The brake system is very complicated, and the brake system for the ordinary gasoline and diesel passenger vehicle is controlled by hydraulic system and vacuum servo. But for passenger vehicles, passive safety is superior to active safety. Hence, ESP (ESC, Electronic Stability Control) needs standard configuration, and the brake control system is ESP, which can also control ETC.

To enable active ADAS and self-driving, deep communication between ADAS and controllers is indispensable, which requires controller manufacturers to provide deep support. Of course, they can also create a new system to bypass the original controller. However, the original controller has gained safety certification for scores of years, and the new system has not been certified, which greatly adds costs and complexity. Moreover, it is not realistic for vehicles to be mass-produced. Therefore, it is necessary to win the great support from controller manufacturers. But these controller manufacturers have their own ADAS, unwilling to give up this market. As a result, controller manufacturers do not make available some ports or provide support, so that customers are forced to choose their full set of ADAS. So we can see that the whole ADAS, including sensor algorithm, of Chang’an and Geely is all from Bosch, which has a great impact on China-made sensor manufacturers.

Given the ESC system is paramount, most OEMs have related technology. Various names for ESC, hence, have sprung up. Although the prices for these ESC systems are higher than those of Bosch and Continental, manufacturers still use them to maintain their own independence, with Hyundai, for example, adopting Mando’s ESC system. It takes more than 20 years to develop a new ESC system, during which period large amount of capital and practice cost will be incurred.

Most electric vehicles still adopt the braking system of fuel vehicles and gain additional braking power with EVP or Bosch iBooster. As for these electric vehicles, ESC is still the master controller of braking system. But things have changed. As electric vehicles can, through AC motor, achieve reverse deceleration and recover braking energy, the load of EV braking system reduces considerably. And the new technology drive-by-wire braking system can thus be used.

Drive-by-wire braking system has been extensively used in F1cars, and is replaced when the driving range reaches less than 2,000 km, which causes high costs. Its braking sensitivity is much higher than that of traditional braking systems. Moreover, its flexibility increases dramatically. Hence, the braking system is very practical in the field of ADAS and self-driving. This is why Tesla can achieve intelligentization more easily. Drive-by-wire braking system substitutes ESC system or TCS (traction control system), which allows vehicle manufacturers to get rid of dependence on ESC manufacturers. Tesla Model S, Porsche 918 Spyder, and Audi R8-ETRON adopt this design. There are two systems inside the car: one is traditional front wheel hydraulic brake without EVP, which has the function of ABS; the other is rear-wheel drive-by-wire braking system, which uses electrical signal and motor to control brake calipers.

The disadvantages of drive-by-wire braking system are also evident: first, small braking force due to limited motor power; second, high requirements for heat resistance of brake discs. Porsche 918 Spyder and Audi R8-ETRON adopt ceramic brake discs while Tesla uses high-grade ITT brake discs. Third, due to small volume left for braking motor, only permanent magnet motor can be used. And when you put on brakes, permanent magnet has long been working under the high temperature, thus leading to demagnetization. The reliability of drive-by-wire braking system is yet to be tested. At present, the system, which incurs high costs, can not be used as main braking system but only as auxiliary brake.

In the field of EPS, things get better. China acquired Nexteer, and some enterprises can produce low-end C-EPS. However, the future development of EPS is targeted at R-EPS. There is still an obvious gap between at home and abroad. EPS market is highly concentrated, with the top four manufacturers holding a combined market share of over 75%. The market share of Jtekt exceeded one third. After selling ZF Lenksysteme, ZF still has TRW steering business, reflecting that it has placed emphasis on steering system.

For fuel vehicle design, if you want to develop ADAS or self-driving, it may well be the fastest and most cost-effective way to cooperate with Bosch rather than Continental, whose ESC system is rare in China. As for independent sensor design companies, it is the best choice to partner with manufacturers capable of developing ESC braking system, and the same is true of international companies. Take Sweden-based Autoliv, which invested JPY30 billion in April 2016 to cooperate with Japan’s Nissin Kyogo. With regard to China-made vehicle design, we suggest the cooperation with South Korean Mando

In terms of hybrid electric vehicle design, it is best way to adopt ZFTRW IBC and Continental MK C1 to develop ADAS or self-driving. At the early stage of promotion. Continental and ZF are eager to get support from vehicle manufacturers. Moreover, due to its high integration level, the self-driving function can easily be set in drive-by-wire hydraulic brake.

For electric vehicle design, if you adopt permanent magnet motor, given the narrow working range and poor high-temperature resistance of permanent magnet motor, braking system cannot depends too much on the opposing torque of the motor, hence the need to use the powerful booster brake system like Bosch iBooster. If you use AC induction motor, braking system can rely heavily on the opposing torque of the motor, and rear wheel can use the most advanced EMB, or the real drive-by-wire brake.

1 Braking and Steering System
1.1 Electronic Architecture of Self-driving Cars
1.2 Overview of ADAS-related Chassis
1.3 Structure of Typical Braking System
1.3.1 Principle of Braking System
1.3.2 Magnetic Valve of Braking System 
1.3.3 Vacuum Booster Pump
1.4 EV Braking System
1.5 Brake by Wire
1.6 Drive-by-wire Hydraulic Brake System for HEV
1.7Overview of Mercedes-Benz SBC Braking System
1.7.1 Principle of Mercedes-Benz Sensortronic Brake Control (SBC) 
1.7.2 Structure of Mercedes-Benz SBC Braking System
1.7.3 Fallback Mode of Mercedes-Benz SBC Braking System
1.7.4 Actuator Loop for Mercedes-Benz SBC Braking System
1.8 Toyota EBC System
1.8.1 Exterior Structure of Toyota EBC System
1.8.2 Interior Structure of Toyota EBC System
1.8.3 Block Diagram for Toyota EBC System Circuit
1.8.4 Connection Diagram for Toyota EBC Hydraulic System and Circuitry
1.9 Drive-by-wire Brakes 
1.9.1 Drive-by-wire Brakes of EV Rear Wheel
1.9.2 Drive-by-wire Braking System for Heavy-duty Trucks
1.9.3 Circuit Diagram for Typical Brake-By-Wire System
1.10 ABS 
1.10.1 Location of ABS
1.10.2 Internal Architecture of ABS
1.10.3 ABS History and Principle
1.10.4 ABS Evolving into ESP 
1.11 Structure of ESP (ESC)
1.11.1 Structure of Audi A4L ESP
1.11.2 ESP Work Analysis
1.11.3 Components of Audi A4L ESP
1.11.4 Distribution of Audi A4L ESP
1.11.5 Development Direction of ESP (ESC)
1.12 Overview of EPS
1.12.1 Structure of R-EPS and P-EPS
1.12.2 R-EPS Analysis
1.13 Overview of Steering-by-wire System
1.14 Steering-by-wire System Needs to Simulate Force-feedback System
1.15 Structure of Electric Throttle Control
1.16 Development of Electric Throttle Control
1.17 Overview of Non-contact Electric Throttle Control

2 Braking System and EPS Industry
2.1 Overview of Automotive Braking System
2.2 Supply Relationship between OEMs and Brake Suppliers
2.3 ESC Terms
2.4 Market Share of Global ESC Companies 
2.5 Supply Relationship between OEMs and EPS Suppliers
2.6 Global EPS Market Share

3 Braking System and EPS Manufacturers
3.1 Continental Automotive 
3.2 ZFTRW 
3.3 Bosch 
3.4 Mando
3.5 Nexteer
3.6 BWI Group                   
3.7 Zhejiang Asia-Pacific Mechanical & Electronic
3.8 Akebono                   
3.9 Nissin Kyogo
3.10 ThyssenKrupp
3.11 Advics
3.12 Jtekt
3.13 NSK
3.14 Haldex
3.15 Vie Science & Technology
3.16 Tuopu Group
3.17 Hitachi Automotive Systems
 

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

New Energy Vehicle Electric Drive and Power Domain industry Report, 2024

OEMs lead the integrated development of "3 + 3 + X platform", and the self-production rate continues to increase The electric drive system is developing around technical directions of high integratio...

Global and China Automotive Smart Glass Research Report, 2024

Research on automotive smart glass: How does glass intelligence evolve  ResearchInChina has released the Automotive Smart Glass Research Report 2024. The report details the latest advances in di...

Passenger Car Brake-by-Wire and AEB Market Research Report, 2024

1. EHB penetration rate exceeded 40% in 2024H1 and is expected to overshoot 50% within the yearIn 2024H1, the installations of electro-hydraulic brake (EHB) approached 4 million units, a year-on-year ...

Autonomous Driving Data Closed Loop Research Report, 2024

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop? As software 2.0 and end-to-end technology are introduced into a...

Research Report on Intelligent Vehicle E/E Architectures (EEA) and Their Impact on Supply Chain in 2024

E/E Architecture (EEA) research: Advanced EEAs have become a cost-reducing tool and brought about deep reconstruction of the supply chain The central/quasi-central + zonal architecture has become a w...

Automotive Digital Power Supply and Chip Industry Report, 2024

Research on automotive digital power supply: looking at the digital evolution of automotive power supply from the power supply side, power distribution side, and power consumption side This report fo...

Automotive Software Business Models and Suppliers’ Layout Research Report, 2024

Software business model research: from "custom development" to "IP/platformization", software enters the cost reduction cycle According to the vehicle software system architecture, this report classi...

Passenger Car Intelligent Steering Industry Research Report, 2024

Intelligent Steering Research: Steer-by-wire is expected to land on independent brand models in 2025 The Passenger Car Intelligent Steering Industry Research Report, 2024 released by ResearchInChina ...

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024 highlights the following:Passenger car wireless charging (principle, standards, and Qi2.0 protocol);Passenger car mobile phone ...

Automotive Smart Exteriors Research Report, 2024

Research on automotive smart exteriors: in the trend towards electrification and intelligence, which exteriors will be replaced by intelligence The Automotive Smart Exteriors Research Report, 2024 r...

Automotive Fragrance and Air Conditioning System Research Report, 2024

Research on automotive fragrance/air purification: With surging installations, automotive olfactory interaction is being linked with more scenarios. As users require higher quality of personalized, i...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号