ADAS and Autonomous Driving Industry Chain Report 2018 (I) - Computing Platform and System Architecture
  • July 2018
  • Hard Copy
  • USD $3,600
  • Pages:152
  • Single User License
    (PDF Unprintable)       
  • USD $3,400
  • Code: ZYW237
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,000
  • Hard Copy + Single User License
  • USD $3,800
      

ADAS and Autonomous Driving Industry Chain Report 2018 (I) - Computing Platform and System Architecture underscores the followings:

20120114.gifIntroduction to ADAS and autonomous driving;
20120114.gifADAS and autonomous driving market forecast;
20120114.gifADAS and autonomous driving strategy of carmakers including Geely, GM, SAIC, Dongfeng, Great Wall, GAC, Chang’an, NIO, Xpeng and BYTON;
20120114.gifSoftware architecture of ADAS and autonomous driving, including AUTOSAR Classic and Adaptive, ROS 2.0 and QNX;
20120114.gifHardware architecture of ADAS and autonomous driving, including automotive Ethernet, TSN, Ethernet switch and gateway, and domain controller;
20120114.gifSafety certification of ADAS and autonomous driving, including ISO26262 and AEC-Q100;
20120114.gifStudy into processor firms, including NXP, Renesas, Texas Instruments, Mobileye, Nvidia, Ambarella, Infineon and ARM.

According to ResearchInChina, the Chinese ADAS and autonomous driving market was worth about RMB5.9 billion in 2017 and is expected to reach RMB42.6 billion in 2021 at an AAGR of 67% or so.

 平台 1_副本.png

Automotive vision, MMW radar and ADAS are the market segments that develop first with the MMW radar market enjoying an impressive growth rate, closely followed by low-speed autonomous driving. While LiDAR, commercial-vehicle autonomous driving and passenger-car autonomous driving markets lag behind.

As the automobile enters an era of ADAS and autonomous driving, product iteration races up and lifecycle of products is shortened. The automotive market is far smaller than consumer electronics market but sees bigger difficulty in design and higher design and production costs than that in consumer electronics market. Thus automotive ADAS and autonomous driving processor is confronted with higher risks. Hence adequate financial and human resources are required to support the development of automotive ADAS and autonomous driving processors. Globally, only very a few enterprises like NXP and Renesas are capable of developing whole series of ADAS and autonomous driving processors.

With regard to safety certification, autonomous driving chips must attain ASIL B at least, a level only Renesas R-CAR H3 has reached for now. As GPU is a universal design and not car-dedicated design, it is hard to reach the certified safety level of ISO26262 from the point of design. The certification cycle of ASIL is up to two to four years.

Reliability, precision and functionality of stereo camera are well above that of mono camera, but as the stereo camera must use FPGA, it costs much. High costs restraint the application of the stereo camera only on luxury cars. However, with emergence of Renesas and NXP hardcore stereo processors, the stereo camera will be vastly used in ADAS and autonomous driving field, expanding from luxury models to mid-range ones.

With an explosive growth in data transmission, automotive Ethernet will become a standard configuration of the automobile, and Ethernet gateway or Ethernet switch is indispensable to autonomous driving.

Autosar will act as a standard configuration in ADAS and autonomous driving field.

平台2_副本.png

CNN/DNN graphics machine leaning: GPU is most suitable when data is irrelevant to sequence. Nvidia GPU can be used in multiple fields except for automobile and finds shipments far higher than that of automotive ASIC, enjoying superiority in cost performance. TPU lifts speed and reduces power consumption (only 10% of that of GPU) at the expense of the precision of computation.

RNN/LSTM/reinforcement learning sequence-related machine learning: FPGA has distinct advantages, particularly in power consumption, consuming less than one-fifth of GPU under same performance. However, high-performance FPGA is incredibly costly. FPGA can also process graphics machine leaning and improve performance by reducing precision.

ASIC stands out by performance-to-power consumption ratio but has shortcomings of long development cycle, the highest development cost and the poorest flexibility. The unit price will be very high or firms will make losses if the shipments are small (at least annual shipments of 120 million units if 7-nanometer process is employed). Most ASICs for deep-learning graphics machine learning are similar to TPU.

Power consumption and cost performance are crucial in in-vehicle field. GPU is no doubt a winner in graphic machine learning. However, as algorithms are constantly improved, the ever low requirements on the precision of computation, and low power consumption will ensure a place of FPGA in graphics machine learning. FPGA has overwhelming advantages in sequence machine learning.

Autonomous driving can be divided into two types, one represented by Waymo, which has solved most of the problems concerning environmental perception and concentrates on behavior decision-making with computing architecture of CPU+FPGA (usually Intel Xeon 12-core and above CPU plus Altera or Xilinx’s FPGA; the other represented by Mobileye which has not solved all problems involving environmental perception and concentrates on it with computing architecture of CPU+GPU/ASIC.

CPU+GPU will be the mainstream in the short run, but CPU+FPGA/ASIC may dominate in the long term, largely due to continuous decline in the precision of computation of graphics because of improvement in algorithms and performance of sensors (LiDAR in particular), which is conducive to FPGA, while it is hardly for the power consumption of GPU to fall. It is easier for FPGA to meet car-grade requirements.

In chip contract manufacturing field, TSMC has won all 7-nanometer chip orders, including A12 exclusively provided for Apple, marking for the first time TSMC overtook Intel to become the vendor with the most advanced semiconductor manufacturing process, a must in the production of digital logic chip whose computing capability is underlined in AI autonomous driving.

1 Introduction to ADAS and Autonomous Driving

1.1 Definition and Classification of ADAS
Main Functions of ADAS
1.2 Definition and Key Technologies of Autonomous Vehicle  
1.2.1 Environmental Perception Technology: from Sensor Perception to Data Fusion
Environmental Perception Technology: Different Sensors Have Different Advantages
1.2.2 Positioning Technology
1.2.3 Path Planning Technology
1.2.4 Automatic Parking Technology
1.3 Grading of Autonomous Driving (SAE) 
1.4 Grading of Autonomous Driving (China) 
1.5 Regulations on and Standards for ADAS and Autonomous Driving
1.5.1 Amendment to the 1968 Vienna Convention on Road Traffic Allows Autonomous Driving 
1.5.2 Regulations on Autonomous Driving Tests
1.5.3 EU Lists 11 Automotive Safety Systems to Become Mandatory from 2021
1.6 Typical Framework of Autonomous Driving
1.6.1 First Step, Positioning
HD Map and V2X
1.6.2 Step 2, Perception
3D Bounding with Route Fusion
1.6.3 Step 3: Traffic Scenario Forecast
Forecast Includes Scenario Understanding
1.6.4 Step 4: Decision-making
Lane Overall Planning
Shorter Routes May Be Not Better.
Behavior Planning Is the Most Difficult
There Are Many Behavior Planning Algorithms, Mostly Immature
1.6.5 Step 5: Action Planning
1.6.6 Step 6: Execution

2 Market Size and Forecast
2.1 Global Sales Volume of Autonomous Vehicles, 2015-2050E
2.2 AAGR of Global ADAS Market, 2017-2025E
2.3 Veoneer: Active Safety Market Is Expected to Reach USD30 Billion by 2025
2.4 Chinese ADAS and Autonomous Driving System Market Size, 2016-2021E
2.5 Concurrent Comparison of Domestic Passenger Car ADAS Cumulative Installations in 2017: ACC, FCW and LKS Saw the Fastest Growth Rate

3 Carmakers’ ADAS and Autonomous Driving Strategies
3.1 Geely
3.2 GM Intelligent Driving
3.3 Mobileye Route of Nissan, BMW and Xpeng
3.4 BMW Plans to Mass-produce L3 CO-PILOT in 2021.
Intel’s Driverless Cars Use 32-beam LiDAR
3.5 Bosch Route of Chang’an, FAW, NIO and SAIC
3.6 Bosch’s Autonomous Driving Solutions 
3.6.1 Bosch’s Domain Controllers
Comparison between Various Domain Controllers
3.6.2 TJP Solutions  
3.6.3 Sensor Solutions  
3.6.4 HD Map Solutions  
3.6.5 Planning for Commercial Vehicle Autonomous Driving
3.7 Aptiv Route of Great Wall
Aptiv’s Road Model Relies on LiDAR
3.8 Denso Route of GAC
3.9 Layout of Hyundai L4 Driverless Car Sensors
3.10 Ford Uses High-beam LiDAR as the Core Sensor
3.11 BYTON Collaborates with Aurora

4 Software Architecture of ADAS and Autonomous Driving  
4.1 Core Elements of ADAS and Autonomous Driving System
4.2 Introduction to Autosar
4.2.1 Roadmap
4.2.2 Main Members
4.2.3 Classic Version and Adaptive Version
4.2.4 Architecture of Classic Version
4.2.5 Software Stratification of Adaptive Version; Comparison between Classic Version and Adaptive Version
4.2.6 Roadmap of Adaptive Version
4.3 ROS: an Autonomous Driving Operating System
4.3.1 ROS Recognized by Some Carmakers
4.3.2 Introduction to ROS
4.3.3 ROS2.0 Is Close to Real Time
4.3.3 Transformation of ROS
4.3.4 Security of ROS 
4.4 QNX ADAS 2.0 Achieves the Highest ASIL D Level
4.4.1 Scope Supported by QNX ADAS 2.0 

5 Hardware Architecture of ADAS and Autonomous Driving
5.1 Typical Automotive Network Architecture
5.2 From the Central Gateway to the Domain Controller Structure (NXP)
5.3 Future Automotive Electronic and Electrical Architecture (Bosch) 
5.4 Why Use A Domain Controller
5.4.1 Current and Future Automotive Electronic Architecture
5.4.2 Domain Controllers Share Hardware Resources, so that Operating System and Basic Software Realize Sharing
5.4.3 I/O Architecture and Domain Controller
5.4.4 Basis of Domain Controller: Automotive Ethernet, Automotive Bus Comparison
Automotive Bus Comparison
5.5 Automotive Ethernet
5.5.1 Prototype of Automotive Ethernet: EAVB
5.5.2 The Next Step of EAVB: TSN
5.5.3 TSN Network
5.5.4 TSN Ethernet Switch Is the Core of the Future Autonomous Driving Computing System
5.6 The Computing System Architecture Used by Waymo
5.7 NVIDIA PX2: Architecture
5.8 NXP S32G: Gateway
5.8.1 Architecture of NXP Autonomous Driving Blue Box 
5.8.2 Gateway and Ethernet Switch 
5.9 Architecture of Renesas L4 Computing Platform  
5.9.1 Renesas’ Vision of the Future Automotive Electronic Architecture

6 Safety Certification of ADAS and Autonomous Driving
6.1 Chip Certification in Line with National Automotive Standards
6.2 AEC Certification
6.3 ISO26262, Functional Safety and ASIL
6.4 ISO26262 Process
6.5 Different Safety Levels Require Different Judgmental Independence
6.6 Typical Structure of Autonomous Driving ECU; the Model Part Reaches the B Level; the Planning Part Reaches the D Level

7 ADAS Processor Vendors 
7.1 ADAS and Autonomous Driving Processor Industry
7.1.1 FPGA/GPU/ASIC/CPU/TPU and Machine Learning
7.1.2 Soft/Solid/Hard Core
7.1.3 Solid Core Is the Mainstream 
7.1.4 Architecture of Typical L4 Computing System
7.2 ARM
7.2.1 Application Structure of ARM Autonomous Vehicles
7.2.2 Autonomous Driving SoC Design Recommended by ARM
7.2.3 ARM A Series
7.2.4 ARM R Series and M Series
7.3 NXP
7.3.1 NXP Autonomous Driving CPU Roadmap
7.3.2 Roadmap of NXP’s ADAS and Autonomous Driving Vision Processing Chip
7.3.3 Introduction to NXP S32V3
7.3.4 NXP S32V3 Vision Processing System
7.3.5 Framework Diagram of NXP ADAS Chassis Control MCU MPC5746R 
7.3.6 NXP Autonomous Driving Chassis Control MCU: S32D/S Series
7.4 Renesas 
7.4.1 Renesas R-CAR H3
7.4.2 Renesas R-CAR V3H
7.4.3 Renesas RH850/P1H-C
MCU with the Highest Safety Level Designed for Chassis Control
7.4.4 Renesas Cooperates with Dibotics to Develop LiDAR Applications
7.4.5 Renesas Partners with USHR in HD Map
7.4.6 Renesas Teams up with QNX and University of Waterloo in Operating System
7.4.7 Renesas Collaborates with Leddartech on LiDAR
7.4.8 Renesas’ Cooperation in Autonomous Driving
7.5 Nvidia
7.5.1 Parameters of Nvidia DRIVE Series Products
7.5.2 Circuit Schematic Diagram of PX2 
7.5.3 Nvidia DRIVE Xavier
7.5.4 Nvidia DRIVE Pegasus
7.6 Ambarella 
7.6.1 Technology Distribution and Roadmap
7.6.2 Core Technology CVflow and Stereo-camera Data Processing Hard Core
7.6.3 Ambarella CV2AQ
7.6.4 Ambarella CV2AQ
7.7 Mobileye
7.7.1 Internal Framework Diagram of Mobileye Eyeq4/5 
7.7.2 Dual-EYEQ4 L3 Solutions (HiRain Technologies) 
7.8 TDA Series of Texas Instruments
7.8.1 Introduction to TDA2 Series
7.8.2 TDA4 and TIDL
7.8.3 Single-chip MMW Radar Solutions
7.9 Infineon
7.9.1 MEMS LiDAR Solutions
7.9.2 MMW Radar Transceivers
 

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

New Energy Vehicle Electric Drive and Power Domain industry Report, 2024

OEMs lead the integrated development of "3 + 3 + X platform", and the self-production rate continues to increase The electric drive system is developing around technical directions of high integratio...

Global and China Automotive Smart Glass Research Report, 2024

Research on automotive smart glass: How does glass intelligence evolve  ResearchInChina has released the Automotive Smart Glass Research Report 2024. The report details the latest advances in di...

Passenger Car Brake-by-Wire and AEB Market Research Report, 2024

1. EHB penetration rate exceeded 40% in 2024H1 and is expected to overshoot 50% within the yearIn 2024H1, the installations of electro-hydraulic brake (EHB) approached 4 million units, a year-on-year ...

Autonomous Driving Data Closed Loop Research Report, 2024

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop? As software 2.0 and end-to-end technology are introduced into a...

Research Report on Intelligent Vehicle E/E Architectures (EEA) and Their Impact on Supply Chain in 2024

E/E Architecture (EEA) research: Advanced EEAs have become a cost-reducing tool and brought about deep reconstruction of the supply chain The central/quasi-central + zonal architecture has become a w...

Automotive Digital Power Supply and Chip Industry Report, 2024

Research on automotive digital power supply: looking at the digital evolution of automotive power supply from the power supply side, power distribution side, and power consumption side This report fo...

Automotive Software Business Models and Suppliers’ Layout Research Report, 2024

Software business model research: from "custom development" to "IP/platformization", software enters the cost reduction cycle According to the vehicle software system architecture, this report classi...

Passenger Car Intelligent Steering Industry Research Report, 2024

Intelligent Steering Research: Steer-by-wire is expected to land on independent brand models in 2025 The Passenger Car Intelligent Steering Industry Research Report, 2024 released by ResearchInChina ...

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024 highlights the following:Passenger car wireless charging (principle, standards, and Qi2.0 protocol);Passenger car mobile phone ...

Automotive Smart Exteriors Research Report, 2024

Research on automotive smart exteriors: in the trend towards electrification and intelligence, which exteriors will be replaced by intelligence The Automotive Smart Exteriors Research Report, 2024 r...

Automotive Fragrance and Air Conditioning System Research Report, 2024

Research on automotive fragrance/air purification: With surging installations, automotive olfactory interaction is being linked with more scenarios. As users require higher quality of personalized, i...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号