Global and China Automotive Domain Control Unit (DCU) Industry Report, 2018-2019
  • Feb.2019
  • Hard Copy
  • USD $3,400
  • Pages:160
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: LY002
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Electronic control unit (ECU) serves as an automotive computer controller. Automotive electronic controller is used to receive and process signals from sensors and export control commands to the actuator to execute. Microprocessors, the core of an automotive ECU, embrace micro control unit (MCU), microprocessor unit (MPU), digital signal processor (DSP) and logic integrated circuits (IC). The global ECU leaders are Bosch, Denso, Continental, Aptiv, Visteon, among others.

As vehicle trend to use more electronics, ECU is making its way into all auto parts from anti-lock braking system, four-wheel drive system, electronically controlled automatic transmission, active suspension system and airbag system to body safety, network, entertainment and sensing and control systems. Vehicles’ consumption of ECU then booms: high-class models use 50-70 ECUs on average, and some even carries more than 100 units.

When the one-to-one correspondence between the growing number of sensors and ECUs gives rise to underperforming vehicles and far more complex circuits, more powerful centralized architectures like domain control unit (DCU) and multi-domain controller (MDC) come as an alternative to the distributed ones. 

The concept of domain control unit (DCU) was initiated by tier-1 suppliers like Bosch and Continental as a solution to information security and ECU development bottlenecks. DCU can make systems much more integrated for its powerful hardware computing capacity and availability of sundry software interfaces enable integration of more core functional modules, which means lower requirements on function perception and execution hardware. Moreover, standardized interfaces for data interaction help these components turn into standard ones, thus reducing the spending on research and development or manufacture. In other words, unlike peripheral parts just playing their own roles, a central domain control unit looks at the whole system.  


Figure 1: Visteon integrates instrument ECU and head unit ECU into SmartCore cockpit domain controller

dcu 1_副本.png

Autonomous vehicle requires domain controllers not only to be integrated with versatile capabilities such as multi-sensor fusion, localization, path planning, decision making and control, V2X and high speed communication, but to have interfaces for cameras (mono/stereo), multiple radars, LiDAR, IMU, etc.

To complete number crunching, a domain control unit often needs a built-in core processor with strong computing power for smart cockpit and autonomous driving at all levels. Solution providers include NVIDIA, Infineon, Renesas, TI, NXP and Mobileye. The scheme that powerful multi-core CPU/GPU chips are used to control every domain in a centralized way can replace former distributed automotive electric/electronic architectures (EEA).


Figure 2: evolution of Bosch E/E architecture. It has six layers, i.e., Modular,Integration, Centralization, Fusion, Vehicle Computer and Vehicle Cloud Computing. DCU is applied to the third layer (Centralization), and MDC the fourth (Fusion).

dcu 2_副本.png


 In current stage, most new vehicles adopt DCU-based E/E architectures. In Singulato iS6’s case, a DCU + automotive Ethernet based network topology is used to divide E/E architecture into 5 domains: intelligent driving, smart cockpit, body, chassis and power; an integrated design allows fusion of all sensor data into the intelligent driving domain controller which is in charge of data processing and decision making to implement ADAS functions such as adaptive cruise control, lane keeping and automatic parking. All imply that automakers need to develop their own ADAS/AD systems. 

DCU 3_副本.png

The study by “Cool Wax Gourd”, a technical expert’s Twitter-like Sina Weibo account, shows that: the evolution of three generations of Tesla models from Model S to Model X to Model 3, is actually a process of functional redistribution, namely, developing capabilities based on those from suppliers; Model S E/E architecture has been a fifth-layer one (Vehicle Computer) at the start.

As automotive E/E architectures evolve, there is a big shift in relationship between OEMs and automotive electronics suppliers, too. The trend for integrated automotive electronic hardware leads to the smaller number of electronics suppliers and the more important role of DCU vendors.

Being generally integrated with instrument clusters and head unit, a cockpit domain controller for instance, will be fused with air conditioner control, HUD, rearview mirror, gesture recognition, DMS and even T-BOX and OBU in future.

An autonomous vehicle that generates 4TB data an hour, needs a domain control unit to have some advanced competencies such as multi-sensor fusion and 3D localization.

Central gateway closely tied with domain controllers, takes charge of sending and receiving key security data, and is directly and only connected to the backstage of automakers. Through OTA updates to domain controllers, carmakers can develop new capabilities and ensure network security for faster deployment of functions and software.

DCU vendors and automakers will deepen their partnerships in research and development.

Desay SV argues that: tier-1 suppliers and OEMs will collaborate in the following two ways in the area of autonomous driving domain controller:

First, tier-1 suppliers are devoted to making middleware and hardware, and OEMs develop autonomous driving software. As tier-1 suppliers enjoy edges in producing products at reasonable cost and accelerating commercialization, automakers are bound to partner with them: OEMs assume software design while tier-1 suppliers take on production of hardware and integration of middleware and chip solutions.
Second, tier-1 suppliers choose to work with chip vendors in solution design and research and development of central domain controllers, and then sell their products to OEMs. Examples include Continental ADCU, ZF ProAI and Magna MAX4.

It can be seen from the two tables below that there is a tendency towards cooperation between controller vendors and OEMs, domain controller suppliers and chip vendors, in both cockpit and autonomous driving domain controllers.

 

DCU 4_副本.png
 


Typical Autonomous Driving DCU Vendors and Their Customers and Partners

dcu 5_副本.png


DCU, as a kind of OEM automotive electronics, usually takes over two years from design to mass production and launch. Most of the above suppliers are still researching and developing DCU. Aptiv and Visteon are far ahead of peers and have mass-produced DCU.

The global automotive DCU (cockpit + autonomous driving) shipments will exceed 14 million sets in 2025, with the average annual growth rate of 50.7% between 2019 and 2025, according to ResearchInChina.

dcu 6_副本.png

Throughout the DCU industry, Chinese companies have emerged strikingly in the past two years, such as Desay SV, Baidu, Neusoft, HiGO Automotive, COOKOO, In-driving, iMotion, etc., all of which now takes emerging and non-first-tier traditional automakers as their key clients.

 

1 From ECU to Domain Control Unit (DCU)
1.1 ECU
1.1.1 Block Diagram of Typical Automotive Electronic Control Circuit
1.1.2 Automotive Electronic Control Unit Industry Chain
1.1.3 ECU Evolution 
1.1.4 Enormous Growth of ECU and Emergence of Domain Controller
1.2 Domain Controller
1.2.1 Typical Five Major Domain Controllers
1.2.2 Why to Use Domain Controller
1.2.3 Domain Controller Shares Hardware Resources and Realizes the Sharing of Basic Software
1.2.4 Domain Controller Network Architecture
1.3 Domain Controller Related Chip
1.3.1 Infineon AURIX Chip
1.3.2 Infineon AURIX TC3XX
1.3.3 NVIDIA DRIVE Series Chips
1.3.4 TI Cockpit Chip
1.3.5 TI Jacinto 
1.3.6 Renesas Chip
1.3.7 Qualcomm Chip
1.3.8 NXP Chip
1.4 Estimated Global Market Size of Automotive Domain Controller (Cockpit + AD)

2 Gateway and E/E Architecture
2.1 Gateway Controller
2.1.1 Typical Gateway Controller (1)
2.1.2 Typical Gateway Controller (2)
2.1.3 NXP’s Gateway Solutions
2.1.4 ST’s Safety Gateway Solutions
2.2 Electrical/Electronic Architecture (EEA)
2.2.1 Typical Automotive EEA (1)
2.2.2 Typical Automotive EEA (2)
2.2.3 Potential E/E Architecture (1) in Future
2.2.4 Potential E/E Architecture (2) in Future
2.2.5 Distributed E/E System Architecture (Continental)
2.2.6 Future Automotive E/E Architecture (NXP)
2.2.7 Future Automotive E/E Architecture (Bosch)
2.2.8 Service-oriented Architecture (SOA)
2.3 E/E Architecture Samples of Automakers
2.3.1 Daimler-Benz 1st-Gen E/E Architecture
2.3.2 Daimler-Benz 2nd-Gen E/E Architecture
2.3.3 E/E Architecture of MAN
2.3.4 SCANIA’s E/E Architecture
2.3.5 IVECO’s E/E Architecture
2.3.6 Tesla Model 3 Architecture

3 Cockpit Domain Controller
3.1 Traditional Cockpit System Design
3.2 Cockpit Domain before and after 2020
3.3 Example of Complex Design of Cockpit Domain Controller
3.4 Visteon’s Cockpit Domain Controller
3.5 NXP Cockpit Solutions
3.6 iMX8 Solutions
3.7 TI Cockpit Solutions
3.8 Development Tendency of Cockpit Domain Controller
3.9 Development Trends of Future Cockpit Electronics

4 ADAS/AD Domain Controller
  
4.1 AD Domain Controller
4.2 Typical AD Domain Controllers (13 Models)
4.3 Aptiv’s ADAS Multi-domain Controller
4.4 Tesla Autopilot 2.0 / 2.5
4.5 Veoneer’s AD ECU

5 Foreign Domain Controller Companies
5.1 Visteon
5.1.1 Profile of Visteon
5.1.2 Revenue in 2018 and Orders for Domain Controller
5.1.3 Drive Core Autonomous Driving (AD) Platform
5.1.4 Drive Core Autonomous Driving (AD) Platform Architecture
5.1.5 Smart Core Cockpit Domain Controller
5.1.6 Visteon Automotive Electronics Architecture
5.2 Continental
5.2.1 High-performance SoC Processor Facilitates the Development of Domain Controller
5.2.2 Continental’s Safety Domain Control Unit (SDCU)
5.2.3 Continental’s Assisted & Automated Driving Control Unit (ADCU)
5.3 Bosch 
5.3.1 Hybrid Architecture of Bosch Domain Classification ECU 
5.3.2 Bosch Cross Domain Control Unit 
5.4 Veoneer  
5.4.1 Zeus ADAS ECU
5.4.2 Zeus ADAS ECU –Functional Architecture
5.5 ZF
5.5.1 ProAI Controller
5.5.2 ZF’s Collaboration with Baidu
5.5.3 4th-generation ProAI
5.6 MAGNA
5.6.1 Profile of MAGNA
5.6.2 MAX4 Autonomous Driving (AD) Platform Domain Controller
5.6.3 MAX4 Enables L4 Automated Driving
5.7 Tesla AD Platform
5.7.1 Functional Characteristics of AutoPilot2.0 Domain Controller
5.7.2 Technical Parameters of AutoPilot2.0 Domain Controller 
5.7.3 Functional Characteristics of AutoPilot2.5 Domain Controller
5.8 TTTech
5.8.1 Profile of TTTech
5.8.2 TTTech and MotionWise
5.8.3 TTTech and zFAS
5.8.4 TTTech’s Technical Superiorities in Autonomous Driving (AD) Controller
5.8.5 Joint Funding of TTTech with SAIC Motor

6 Chinese Domain Controller Vendors
6.1 HiGo Automotive
6.1.1 Profile
6.1.2 Wise ADCU Series Products
6.1.3 Wise ADCU M6 
6.1.4 Wise ADCU M6 Interfaces and Parameters
6.1.5 Wise ADCU X1 
6.1.6 Wise ADCU X1 Hardware Specifications
6.1.7 Customers and Partners
6.2 In-Driving
6.2.1 TITAN Domain Controller
6.2.2 Composition of TITAN 3 Domain Controller
6.2.3 Block Diagram of TITAN-III 
6.2.4 Performance Indices of TITAN-III Domain Controller
6.2.5 Athena
6.3 COOKOO
6.3.1 Cookoo Automotive Computing Platform Architecture
6.3.2 Cookoo AutoCabin-J1 Architecture
6.3.3 Cookoo AutoCabin-J2 Architecture
6.3.4 Cookoo AutoCabin-J3 Architecture
6.3.5 Cookoo AutoCabin-Centralized Domain Vehicle Electronics Architecture
6.3.6 Product Roadmap of Cookoo Intelligent Computing Platform
6.4 Baidu Domain Controller
6.4.1 Baidu AD Brain: Conventional IPC Centralized Architecture
6.4.2 Baidu AD Brain: Multi-domain Solutions
6.4.3 BCU Mass-production Scheduled in 2019
6.4.4 BCU-MLOC and BCU-MLOP
6.4.5 BCU-MLOP and BCU-MLOP2
6.5 iMotion
6.5.1 Profile
6.5.2 iMo DCU 3.0 Was Unveiled
6.6 HiRain Technologies
6.6.1 Domain Controller
6.6.2 Vehicle Body Domain Controller Architecture
6.7 Neusoft REACH
6.7.1 REACH Central Domain Controller for Autonomous Driving
6.7.2 REACH DCU Functions for Autonomous Driving
6.7.3 Cabin Products of Neusoft
6.8 Desay SV
6.8.1 Profile
6.8.2 Strategic Layout
6.8.3 New-generation Smart Cockpit
6.8.4 Orders for Its Smart Cockpit Capable of 4-Screen Interaction
6.8.5 Desay SV Intelligent Driving Product Lines
6.8.6 Desay SV Highway Pilot and AVP Solutions
6.8.7 Desay SV and DearCC ENOVATE ME7
6.8.8 Cooperation between Desay SV and NVIDIA in the Development of Domain Controller
6.9 ECO-EV
6.9.1 Autonomous Driving (AD) ACU
6.9.2 Technical Features
 

China Automotive Fragrance and Air Purification Systems Research Report, 2023

Automotive fragrance and air purification systems: together to create a comfortable and healthy cockpitTechnology trend: intelligence of fragrance system and integration of air purification system In...

Global and China Solid State Battery Industry Report, 2023

Solid state battery research: semi-solid state battery has come out, is all-solid state battery still far away?In recent years, the new energy vehicle market has been booming, and the penetration of n...

Global and China Passenger Car T-Box Market Report, 2023

T-Box industry research: the market will be worth RMB10 billion and the integration trend is increasingly clear. ResearchInChina released "Global and China Passenger Car T-Box Market Report, 2023", w...

Analysis Report on Auto Shanghai 2023

Analysis on 75 Trends at Auto Shanghai 2023: Unprecedented Prosperity of Intelligent Cockpits and Intelligent Driving Ecology After analyzing the intelligent innovation trends at the Auto Shanghai 20...

Chinese Emerging Carmakers’ Telematics System and Entertainment Ecosystem Research Report, 2022-2023

Telematics service research (III): emerging carmakers work on UI design, interaction, and entertainment ecosystem to improve user cockpit experience. ResearchInChina released Chinese Emerging Carmake...

China Passenger Car Cockpit-Parking Industry Report, 2023

Cockpit-parking integration research: cockpit-parking vs. driving-parking, which one is the optimal solution for cockpit-driving integration?Cockpit-parking vs. driving-parking, which one is the optim...

Automotive Sensor Chip Industry Report, 2023

Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution. At the Auto Shanghai 2023, "more weight on percepti...

Automotive Electronics OEM/ODM/EMS Industry Report, 2023

Automotive electronics OEM/ODM/EMS research: amid the disruption in the division of labor mode in the supply chain, which auto parts will be covered by OEM/ODM/EMS mode?  Consumer electronic manu...

China Automotive Smart Glass Research Report, 2023

Smart glass research: the automotive smart dimming canopy market valued at RMB127 million in 2022 has a promising future.Smart dimming glass is a new type of special optoelectronic glass formed by com...

Automotive Ultrasonic Radar and OEM Parking Roadmap Development Research Report, 2023

Automotive Ultrasonic Radar Research: as a single vehicle is expected to carry 7 units in 2025, ultrasonic radars will evolve to the second generation.    As a single vehicle is expec...

Autonomous Driving SoC Research Report, 2023

Research on autonomous driving SoC: driving-parking integration boosts the industry, and computing in memory (CIM) and chiplet bring technological disruption.  “Autonomous Driving SoC Research ...

China ADAS Redundant System Strategy Research Report, 2023

Redundant System Research: The Last Line of Safety for Intelligent VehiclesRedundant design refers to a technology adding more than one set of functional channels, components or parts that enable the ...

Intelligent Steering Key Components Report, 2023

Research on intelligent steering key components: four development trends of intelligent steering The automotive chassis consists of four major systems: transmission system, steering system, driving ...

Automotive Digital Instrument Cluster Operating System Report, 2023

Digital Instrument Cluster Operating System Report: QNX commanded 71% of the Chinese intelligent vehicle cluster operating system market. Amid the trend for the integration of digital cluster and cen...

800V High Voltage Platform Research Report, 2023

How to realize the commercialization of 800V will play a crucial part in the strategy of OEMs. As new energy vehicles and battery technology boom, charging and battery swapping in the new energy vehi...

Automotive Intelligent Cockpit Platform Research Report, 2023

Intelligent cockpit platform research: the boundaries between vehicles and PCs are blurring, and there are several feasible paths for cockpit platforms. Automotive Intelligent Cockpit Platform Resea...

Global and China Automotive Wireless Communication Module Industry Report,2023

Vehicle communication module research: 5G R16+C-V2X module, smart SiP module and other new products spring up.   In 2022, 4G modules swept 84.3% of the vehicle communication module market....

Intelligent Vehicle Cockpit-Driving Integration Research Report, 2023

Cockpit-Driving Integration Research: many companies are making layout and may implement it during 2024-2025.  1. What is the real cockpit-driving integration? At present, automotive electroni...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号