Global and China Automotive Domain Control Unit (DCU) Industry Report, 2018-2019
  • Feb.2019
  • Hard Copy
  • USD $3,400
  • Pages:160
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: LY002
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Electronic control unit (ECU) serves as an automotive computer controller. Automotive electronic controller is used to receive and process signals from sensors and export control commands to the actuator to execute. Microprocessors, the core of an automotive ECU, embrace micro control unit (MCU), microprocessor unit (MPU), digital signal processor (DSP) and logic integrated circuits (IC). The global ECU leaders are Bosch, Denso, Continental, Aptiv, Visteon, among others.

As vehicle trend to use more electronics, ECU is making its way into all auto parts from anti-lock braking system, four-wheel drive system, electronically controlled automatic transmission, active suspension system and airbag system to body safety, network, entertainment and sensing and control systems. Vehicles’ consumption of ECU then booms: high-class models use 50-70 ECUs on average, and some even carries more than 100 units.

When the one-to-one correspondence between the growing number of sensors and ECUs gives rise to underperforming vehicles and far more complex circuits, more powerful centralized architectures like domain control unit (DCU) and multi-domain controller (MDC) come as an alternative to the distributed ones. 

The concept of domain control unit (DCU) was initiated by tier-1 suppliers like Bosch and Continental as a solution to information security and ECU development bottlenecks. DCU can make systems much more integrated for its powerful hardware computing capacity and availability of sundry software interfaces enable integration of more core functional modules, which means lower requirements on function perception and execution hardware. Moreover, standardized interfaces for data interaction help these components turn into standard ones, thus reducing the spending on research and development or manufacture. In other words, unlike peripheral parts just playing their own roles, a central domain control unit looks at the whole system.  


Figure 1: Visteon integrates instrument ECU and head unit ECU into SmartCore cockpit domain controller

dcu 1_副本.png

Autonomous vehicle requires domain controllers not only to be integrated with versatile capabilities such as multi-sensor fusion, localization, path planning, decision making and control, V2X and high speed communication, but to have interfaces for cameras (mono/stereo), multiple radars, LiDAR, IMU, etc.

To complete number crunching, a domain control unit often needs a built-in core processor with strong computing power for smart cockpit and autonomous driving at all levels. Solution providers include NVIDIA, Infineon, Renesas, TI, NXP and Mobileye. The scheme that powerful multi-core CPU/GPU chips are used to control every domain in a centralized way can replace former distributed automotive electric/electronic architectures (EEA).


Figure 2: evolution of Bosch E/E architecture. It has six layers, i.e., Modular,Integration, Centralization, Fusion, Vehicle Computer and Vehicle Cloud Computing. DCU is applied to the third layer (Centralization), and MDC the fourth (Fusion).

dcu 2_副本.png


 In current stage, most new vehicles adopt DCU-based E/E architectures. In Singulato iS6’s case, a DCU + automotive Ethernet based network topology is used to divide E/E architecture into 5 domains: intelligent driving, smart cockpit, body, chassis and power; an integrated design allows fusion of all sensor data into the intelligent driving domain controller which is in charge of data processing and decision making to implement ADAS functions such as adaptive cruise control, lane keeping and automatic parking. All imply that automakers need to develop their own ADAS/AD systems. 

DCU 3_副本.png

The study by “Cool Wax Gourd”, a technical expert’s Twitter-like Sina Weibo account, shows that: the evolution of three generations of Tesla models from Model S to Model X to Model 3, is actually a process of functional redistribution, namely, developing capabilities based on those from suppliers; Model S E/E architecture has been a fifth-layer one (Vehicle Computer) at the start.

As automotive E/E architectures evolve, there is a big shift in relationship between OEMs and automotive electronics suppliers, too. The trend for integrated automotive electronic hardware leads to the smaller number of electronics suppliers and the more important role of DCU vendors.

Being generally integrated with instrument clusters and head unit, a cockpit domain controller for instance, will be fused with air conditioner control, HUD, rearview mirror, gesture recognition, DMS and even T-BOX and OBU in future.

An autonomous vehicle that generates 4TB data an hour, needs a domain control unit to have some advanced competencies such as multi-sensor fusion and 3D localization.

Central gateway closely tied with domain controllers, takes charge of sending and receiving key security data, and is directly and only connected to the backstage of automakers. Through OTA updates to domain controllers, carmakers can develop new capabilities and ensure network security for faster deployment of functions and software.

DCU vendors and automakers will deepen their partnerships in research and development.

Desay SV argues that: tier-1 suppliers and OEMs will collaborate in the following two ways in the area of autonomous driving domain controller:

First, tier-1 suppliers are devoted to making middleware and hardware, and OEMs develop autonomous driving software. As tier-1 suppliers enjoy edges in producing products at reasonable cost and accelerating commercialization, automakers are bound to partner with them: OEMs assume software design while tier-1 suppliers take on production of hardware and integration of middleware and chip solutions.
Second, tier-1 suppliers choose to work with chip vendors in solution design and research and development of central domain controllers, and then sell their products to OEMs. Examples include Continental ADCU, ZF ProAI and Magna MAX4.

It can be seen from the two tables below that there is a tendency towards cooperation between controller vendors and OEMs, domain controller suppliers and chip vendors, in both cockpit and autonomous driving domain controllers.

 

DCU 4_副本.png
 


Typical Autonomous Driving DCU Vendors and Their Customers and Partners

dcu 5_副本.png


DCU, as a kind of OEM automotive electronics, usually takes over two years from design to mass production and launch. Most of the above suppliers are still researching and developing DCU. Aptiv and Visteon are far ahead of peers and have mass-produced DCU.

The global automotive DCU (cockpit + autonomous driving) shipments will exceed 14 million sets in 2025, with the average annual growth rate of 50.7% between 2019 and 2025, according to ResearchInChina.

dcu 6_副本.png

Throughout the DCU industry, Chinese companies have emerged strikingly in the past two years, such as Desay SV, Baidu, Neusoft, HiGO Automotive, COOKOO, In-driving, iMotion, etc., all of which now takes emerging and non-first-tier traditional automakers as their key clients.

 

1 From ECU to Domain Control Unit (DCU)
1.1 ECU
1.1.1 Block Diagram of Typical Automotive Electronic Control Circuit
1.1.2 Automotive Electronic Control Unit Industry Chain
1.1.3 ECU Evolution 
1.1.4 Enormous Growth of ECU and Emergence of Domain Controller
1.2 Domain Controller
1.2.1 Typical Five Major Domain Controllers
1.2.2 Why to Use Domain Controller
1.2.3 Domain Controller Shares Hardware Resources and Realizes the Sharing of Basic Software
1.2.4 Domain Controller Network Architecture
1.3 Domain Controller Related Chip
1.3.1 Infineon AURIX Chip
1.3.2 Infineon AURIX TC3XX
1.3.3 NVIDIA DRIVE Series Chips
1.3.4 TI Cockpit Chip
1.3.5 TI Jacinto 
1.3.6 Renesas Chip
1.3.7 Qualcomm Chip
1.3.8 NXP Chip
1.4 Estimated Global Market Size of Automotive Domain Controller (Cockpit + AD)

2 Gateway and E/E Architecture
2.1 Gateway Controller
2.1.1 Typical Gateway Controller (1)
2.1.2 Typical Gateway Controller (2)
2.1.3 NXP’s Gateway Solutions
2.1.4 ST’s Safety Gateway Solutions
2.2 Electrical/Electronic Architecture (EEA)
2.2.1 Typical Automotive EEA (1)
2.2.2 Typical Automotive EEA (2)
2.2.3 Potential E/E Architecture (1) in Future
2.2.4 Potential E/E Architecture (2) in Future
2.2.5 Distributed E/E System Architecture (Continental)
2.2.6 Future Automotive E/E Architecture (NXP)
2.2.7 Future Automotive E/E Architecture (Bosch)
2.2.8 Service-oriented Architecture (SOA)
2.3 E/E Architecture Samples of Automakers
2.3.1 Daimler-Benz 1st-Gen E/E Architecture
2.3.2 Daimler-Benz 2nd-Gen E/E Architecture
2.3.3 E/E Architecture of MAN
2.3.4 SCANIA’s E/E Architecture
2.3.5 IVECO’s E/E Architecture
2.3.6 Tesla Model 3 Architecture

3 Cockpit Domain Controller
3.1 Traditional Cockpit System Design
3.2 Cockpit Domain before and after 2020
3.3 Example of Complex Design of Cockpit Domain Controller
3.4 Visteon’s Cockpit Domain Controller
3.5 NXP Cockpit Solutions
3.6 iMX8 Solutions
3.7 TI Cockpit Solutions
3.8 Development Tendency of Cockpit Domain Controller
3.9 Development Trends of Future Cockpit Electronics

4 ADAS/AD Domain Controller
  
4.1 AD Domain Controller
4.2 Typical AD Domain Controllers (13 Models)
4.3 Aptiv’s ADAS Multi-domain Controller
4.4 Tesla Autopilot 2.0 / 2.5
4.5 Veoneer’s AD ECU

5 Foreign Domain Controller Companies
5.1 Visteon
5.1.1 Profile of Visteon
5.1.2 Revenue in 2018 and Orders for Domain Controller
5.1.3 Drive Core Autonomous Driving (AD) Platform
5.1.4 Drive Core Autonomous Driving (AD) Platform Architecture
5.1.5 Smart Core Cockpit Domain Controller
5.1.6 Visteon Automotive Electronics Architecture
5.2 Continental
5.2.1 High-performance SoC Processor Facilitates the Development of Domain Controller
5.2.2 Continental’s Safety Domain Control Unit (SDCU)
5.2.3 Continental’s Assisted & Automated Driving Control Unit (ADCU)
5.3 Bosch 
5.3.1 Hybrid Architecture of Bosch Domain Classification ECU 
5.3.2 Bosch Cross Domain Control Unit 
5.4 Veoneer  
5.4.1 Zeus ADAS ECU
5.4.2 Zeus ADAS ECU –Functional Architecture
5.5 ZF
5.5.1 ProAI Controller
5.5.2 ZF’s Collaboration with Baidu
5.5.3 4th-generation ProAI
5.6 MAGNA
5.6.1 Profile of MAGNA
5.6.2 MAX4 Autonomous Driving (AD) Platform Domain Controller
5.6.3 MAX4 Enables L4 Automated Driving
5.7 Tesla AD Platform
5.7.1 Functional Characteristics of AutoPilot2.0 Domain Controller
5.7.2 Technical Parameters of AutoPilot2.0 Domain Controller 
5.7.3 Functional Characteristics of AutoPilot2.5 Domain Controller
5.8 TTTech
5.8.1 Profile of TTTech
5.8.2 TTTech and MotionWise
5.8.3 TTTech and zFAS
5.8.4 TTTech’s Technical Superiorities in Autonomous Driving (AD) Controller
5.8.5 Joint Funding of TTTech with SAIC Motor

6 Chinese Domain Controller Vendors
6.1 HiGo Automotive
6.1.1 Profile
6.1.2 Wise ADCU Series Products
6.1.3 Wise ADCU M6 
6.1.4 Wise ADCU M6 Interfaces and Parameters
6.1.5 Wise ADCU X1 
6.1.6 Wise ADCU X1 Hardware Specifications
6.1.7 Customers and Partners
6.2 In-Driving
6.2.1 TITAN Domain Controller
6.2.2 Composition of TITAN 3 Domain Controller
6.2.3 Block Diagram of TITAN-III 
6.2.4 Performance Indices of TITAN-III Domain Controller
6.2.5 Athena
6.3 COOKOO
6.3.1 Cookoo Automotive Computing Platform Architecture
6.3.2 Cookoo AutoCabin-J1 Architecture
6.3.3 Cookoo AutoCabin-J2 Architecture
6.3.4 Cookoo AutoCabin-J3 Architecture
6.3.5 Cookoo AutoCabin-Centralized Domain Vehicle Electronics Architecture
6.3.6 Product Roadmap of Cookoo Intelligent Computing Platform
6.4 Baidu Domain Controller
6.4.1 Baidu AD Brain: Conventional IPC Centralized Architecture
6.4.2 Baidu AD Brain: Multi-domain Solutions
6.4.3 BCU Mass-production Scheduled in 2019
6.4.4 BCU-MLOC and BCU-MLOP
6.4.5 BCU-MLOP and BCU-MLOP2
6.5 iMotion
6.5.1 Profile
6.5.2 iMo DCU 3.0 Was Unveiled
6.6 HiRain Technologies
6.6.1 Domain Controller
6.6.2 Vehicle Body Domain Controller Architecture
6.7 Neusoft REACH
6.7.1 REACH Central Domain Controller for Autonomous Driving
6.7.2 REACH DCU Functions for Autonomous Driving
6.7.3 Cabin Products of Neusoft
6.8 Desay SV
6.8.1 Profile
6.8.2 Strategic Layout
6.8.3 New-generation Smart Cockpit
6.8.4 Orders for Its Smart Cockpit Capable of 4-Screen Interaction
6.8.5 Desay SV Intelligent Driving Product Lines
6.8.6 Desay SV Highway Pilot and AVP Solutions
6.8.7 Desay SV and DearCC ENOVATE ME7
6.8.8 Cooperation between Desay SV and NVIDIA in the Development of Domain Controller
6.9 ECO-EV
6.9.1 Autonomous Driving (AD) ACU
6.9.2 Technical Features
 

Chinese OEMs (Passenger Car) Going Overseas Report, 2024--Germany

Keywords of Chinese OEMs going to Germany: electric vehicles, cost performance, intelligence, ecological construction, localization The European Union's temporary tariffs on electric vehicles in Chi...

Analysis on DJI Automotive’s Autonomous Driving Business, 2024

Research on DJI Automotive: lead the NOA market by virtue of unique technology route. In 2016, DJI Automotive’s internal technicians installed a set of stereo sensors + vision fusion positioning syst...

BYD’s Layout in Electrification, Connectivity, Intelligence and Sharing and Strategy Analysis Report, 2023-2024

Insight: BYD deploys vehicle-mounted drones, and the autonomous driving charging robot market is expected to boom. BYD and Dongfeng M-Hero make cross-border layout of drones.  In recent years,...

Great Wall Motor’s Layout in Electrification, Connectivity, Intelligence and Sharing and Strategy Analysis Report, 2023-2024

Great Wall Motor (GWM) benchmarks IT giants and accelerates “Process and Digital Transformation”. In 2022, Great Wall Motor (GWM) hoped to use Haval H6's huge user base to achieve new energy transfo...

Cockpit AI Agent Research Report, 2024

Cockpit AI Agent: Autonomous scenario creation becomes the first step to personalize cockpits In AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024, Res...

Leading Chinese Intelligent Cockpit Tier 1 Supplier Research Report, 2024

Cockpit Tier1 Research: Comprehensively build a cockpit product matrix centered on users' hearing, speaking, seeing, writing and feeling. ResearchInChina released Leading Chinese Intelligent Cockpit ...

Global and China Automotive Wireless Communication Module Market Report, 2024

Communication module and 5G research: 5G module installation rate reaches new high, 5G-A promotes vehicle application acceleration 5G automotive communication market has exploded, and 5G FWA is evolv...

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2024 – Chinese Companies

ADAS Tier1s Research: Suppliers enter intense competition while exploring new businesses such as robotics In China's intelligent driving market, L2 era is dominated by foreign suppliers. Entering era...

Automotive Gateway Industry Report, 2024

Automotive gateway research: 10BASE-T1S and CAN-XL will bring more flexible gateway deployment solutions ResearchInChina released "Automotive Gateway Industry Report, 2024", analyzing and researching...

Global and China Electronic Rearview Mirror Industry Report, 2024

Research on electronic rearview mirrors: electronic internal rearview mirrors are growing rapidly, and electronic external rearview mirrors are facing growing pains ResearchInChina released "Global a...

Next-generation Zonal Communication Network Topology and Chip Industry Research Report, 2024

The in-vehicle communication architecture plays a connecting role in automotive E/E architecture. With the evolution of automotive E/E architecture, in-vehicle communication technology is also develop...

Autonomous Delivery Industry Research Report, 2024

Autonomous Delivery Research: Foundation Models Promote the Normal Application of Autonomous Delivery in Multiple Scenarios Autonomous Delivery Industry Research Report, 2024 released by ResearchInCh...

Global Autonomous Driving Policies & Regulations and Automotive Market Access Research Report, 2024

Intelligent driving regulations and vehicles going overseas: research on regional markets around the world and access strategies.    "Going out”: discussion about regional markets aroun...

China Passenger Car HUD Industry Report, 2024

HUD research: AR-HUD accounted for 21.1%; LBS and optical waveguide solutions are about to be mass-produced.  The automotive head-up display system (HUD) uses the principle of optics to display s...

Ecological Domain and Automotive Hardware Expansion Research Report, 2024

Automotive Ecological Domain Research: How Will OEM Ecology and Peripheral Hardware Develop? Ecological Domain and Automotive Hardware Expansion Research Report, 2024 released by ResearchInChina ...

C-V2X and CVIS Industry Research Report, 2024

C-V2X and CVIS Research: In 2023, the OEM scale will exceed 270,000 units, and large-scale verification will start.The pilot application of "vehicle-road-cloud integration” commenced, and C-V2X entere...

Automotive Intelligent Cockpit Platform Configuration Strategy and Industry Research Report, 2024

According to the evolution trends and functions, the cockpit platform has gradually evolved into technical paths such as cockpit-only, cockpit integrated with other domains, cockpit-parking integratio...

Analysis on Huawei's Electrification, Connectivity, Intelligence and Sharing,2023-2024

Analysis on Huawei's Electrification, Connectivity, Intelligence and Sharing: Comprehensive layout in eight major fields and upgrade of Huawei Smart Selection The “Huawei Intelligent Driving Business...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号