Passenger Car Camera Market: Front-view Monocular Camera Installations Soared by 104% in 2019Q2 from the Same Period of Last Year.
In the first half of 2019, around 10.89 million cameras were installed in new passenger cars in China, a year-on-year upsurge of 19.93%, among which monocular camera grew faster than others, with installations soaring by a hefty 104% in 2019Q2 on a like-for-like basis, compared with a growth rate of 71.7% in 2019Q1, according to our recent report -- China Passenger Car Camera Market Report, 2019Q2.

In 2019Q2, the top three players Bosch, Aptiv and Valeo seized shares of 23.7%, 18.9% and 16.6% in the Chinese passenger car front-view monocular camera market, respectively. Bosch and Valeo witnessed a faster growth rate than other vendors.
A long postponement in mass production of highly automated driving systems saves major suppliers energy for application of L2 and L2.5. Even for L2, OEMs’ actual progress is a reminder that the technology is still unavailable to a range of scenarios. For example, Attention Assist and Traffic Sign Assist of 2019 new Maybach models and Toyota’s Pre-collision System cannot work under the following conditions.
Attention Assist
Maybach Attention Assist works at speeds between 60 km/h and 200 km/h: it is able to recognize signs of driver fatigue or distraction, and prompts the driver to take a break.

The ATTENTION ASSIST will be not fully exerted, and warnings may be delayed or not occur at all in the following situations:
If the driver has been driving for less than 30 minutes.
If the road condition is poor (uneven road surface or potholes).
If there is a strong side wind.
If the driver adopts a sporty driving style (high cornering speeds or high rates of acceleration).
If the driver drives at speeds between 60 km/h and 200 km/h.
If the Steering Pilot function of DISTRONIC is active.
If the time is set incorrectly.
In active driving situations, if the driver changes lanes and vary their speed frequently.
Traffic Sign Assist
Traffic Sign Assist detects traffic signs with versatile camera and assists the driver by displaying detected speed limits and overtaking restrictions in the instrument cluster. If the system detects that users are driving onto a section of road in the wrong direction, it triggers a warning. A camera on the inside of the windscreen is able to identify road signs at the road side. Data stored in navigation system and general traffic rules are also used to estimate the current speed.
When the vehicle travel through related traffic signs, its speed limit and overtaking restriction will be updated. The system can update the display in the following situations without detecting traffic signs:
When the vehicle changes roads, e.g. freeway exit or ramp
When driving through a village or town borders which are stored in the digital map
When traffic signs the camera detected last time are not there
End sign of restrictions (speed limit or overtaking) will be displayed 5 seconds after the vehicle passes over. Traffic rules available to the current condition will be still displayed on the assist system.
The camera also detects traffic signs with a restriction indicated by an additional sign (e.g. in wet conditions). Only in the following situations can these signs be displayed:
When restriction rules must be complied with, or
When the Traffic Sign Assist system is unable to determine whether restrictions are available or not, speed limits will not be displayed on the instrument cluster if not known from any sources.
The system may be either functionally impaired or temporarily out of work in the following situations:
If there is poor visibility, e.g. due to rain, snow, fog or spray
If there is glare, e.g. from the sun being low in the sky
If there is dirt, ice or misting on the windscreen in the area of the camera
If the traffic signs are hard to detect, e.g. due to dirt, ice or snow
If there is inadequate lighting of the traffic signs at night
If the signs are blurry, e.g. traffic signs on construction sites or in adjacent lanes
If the information in the digital street map of the navigation system is incorrect or out of date
Toyota Pre-collision System (PCS)
Toyota’s Pre-Collision System (PCS) renders an in-vehicle camera and laser to detect pedestrians and other vehicles in front of the vehicle. If it determines possibility of a frontal collision, the system will prompt the driver to take action and avoid it with audio and visual alerts. If the driver notices the potential collision and apply the brakes, the Pre-Collision System with Pedestrian Detection (PCS w/PD) may apply additional force using Brake Assist (BA). If the driver fails to brake in time, it may automatically apply the brakes to reduce the vehicle’s speed, helping to minimize the likelihood of a frontal collision or reduce its severity.
In some situations (such as the following), a vehicle/pedestrian may not be detected by the radar and camera sensors, thus preventing the system from operating properly.
When an oncoming vehicle approaches
When the preceding vehicle is a motorcycle or a bicycle
When approaching the side or front of a vehicle
If a preceding vehicle has a small rear end, such as an unloaded truck
If a preceding vehicle has a low rear end, such as a low bed trailer
When the preceding vehicle has high ground clearance
When a preceding vehicle is carrying a load which protrudes past its rear bumper
If a vehicle ahead is irregularly shaped, such as a tractor or sidecar
If the sun or other light is shining directly on the vehicle ahead
If a vehicle cuts in front of your vehicle or emerges from beside a vehicle
If a preceding vehicle ahead makes an abrupt maneuver (such as sudden swerving, acceleration or deceleration)
When a sudden cut-in occurs behind a preceding vehicle
When a preceding vehicle is not right in front of your vehicle
When driving in bad weather such as heavy rain, fog, snow or a sandstorm
When the vehicle is hit by water, snow, dust, etc. from a vehicle ahead
When driving through steam or smoke
When amount of light changes dramatically, such as at a tunnel exit/entrance
When a very bright light, such as the sun or the headlights of oncoming vehicle, beat down the camera sensor
When driving in low light (dusk, dawn, etc.) or when driving without headlights at night or in a tunnel
After the hybrid system has started and the vehicle has not been driven for a certain period of time
While making a left/right turn and within a few seconds after making a left/right turn
While driving on a curve, and within a few seconds after driving on a curve
If your vehicle is skidding
If the front of the vehicle is raised or lowered
If the wheels are misaligned
If the camera sensor is blocked (by a wiper blade, etc.)
If your vehicle is wobbling
If your vehicle is being driven at extremely high speeds
While driving up or down a slope
When the camera sensor or radar sensor is misaligned
In some situations (such as the following), braking force may be not enough to make PCS work normally:
When braking function fails to work normally due to undercooled, overheated or wet braking parts
When the vehicle is maintained improperly (brake/tires over worn, abnormal tire pressure, etc.)
When the vehicle travels on gravel roads or other slippery roads
PCS should be disabled when radar and camera sensor may not recognize a pedestrian in the following circumstances:
When a pedestrian is 1m or shorter or 2m or taller
When a pedestrian wears oversized clothing (a rain coat, long skirt, etc.), obscuring the pedestrian’s silhouette
When a pedestrian carries large baggage, holds an umbrella, etc., hiding part of the body
When a pedestrian leans forward or squats
When a pedestrian pushes a pram, wheelchair, bicycle or other vehicle
When pedestrians are walking in a group or are close together
When a pedestrian is in white that reflects sunlight and looks extremely bright
When a pedestrian is in the darkness such as at night or while in a tunnel
When a pedestrian has clothing with brightness/color similar to scenery and that blend into the background
When a pedestrian is staying close to or walking alongside a wall, fence, guardrail, vehicle or other obstacle
When a pedestrian is walking on top of metal on the road surface
When a pedestrian walks fast
When a pedestrian abruptly changes walking speed
When a pedestrian runs out from behind a vehicle or a large object
When a pedestrian is very close to a side (external rearview mirror) of the vehicle
ADAS suppliers and OEMs work together on product and technology development to make breakthroughs in so many inapplicable scenarios, so that ADAS can get improved and become safer. All players still have a long way to go before autonomous driving comes true.
China Automotive Fragrance and Air Purification Systems Research Report, 2023
Automotive fragrance and air purification systems: together to create a comfortable and healthy cockpitTechnology trend: intelligence of fragrance system and integration of air purification system
In...
Global and China Solid State Battery Industry Report, 2023
Solid state battery research: semi-solid state battery has come out, is all-solid state battery still far away?In recent years, the new energy vehicle market has been booming, and the penetration of n...
Global and China Passenger Car T-Box Market Report, 2023
T-Box industry research: the market will be worth RMB10 billion and the integration trend is increasingly clear.
ResearchInChina released "Global and China Passenger Car T-Box Market Report, 2023", w...
Analysis Report on Auto Shanghai 2023
Analysis on 75 Trends at Auto Shanghai 2023: Unprecedented Prosperity of Intelligent Cockpits and Intelligent Driving Ecology
After analyzing the intelligent innovation trends at the Auto Shanghai 20...
Chinese Emerging Carmakers’ Telematics System and Entertainment Ecosystem Research Report, 2022-2023
Telematics service research (III): emerging carmakers work on UI design, interaction, and entertainment ecosystem to improve user cockpit experience.
ResearchInChina released Chinese Emerging Carmake...
China Passenger Car Cockpit-Parking Industry Report, 2023
Cockpit-parking integration research: cockpit-parking vs. driving-parking, which one is the optimal solution for cockpit-driving integration?Cockpit-parking vs. driving-parking, which one is the optim...
Automotive Sensor Chip Industry Report, 2023
Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution.
At the Auto Shanghai 2023, "more weight on percepti...
Automotive Electronics OEM/ODM/EMS Industry Report, 2023
Automotive electronics OEM/ODM/EMS research: amid the disruption in the division of labor mode in the supply chain, which auto parts will be covered by OEM/ODM/EMS mode? Consumer electronic manu...
China Automotive Smart Glass Research Report, 2023
Smart glass research: the automotive smart dimming canopy market valued at RMB127 million in 2022 has a promising future.Smart dimming glass is a new type of special optoelectronic glass formed by com...
Automotive Ultrasonic Radar and OEM Parking Roadmap Development Research Report, 2023
Automotive Ultrasonic Radar Research: as a single vehicle is expected to carry 7 units in 2025, ultrasonic radars will evolve to the second generation.
As a single vehicle is expec...
Autonomous Driving SoC Research Report, 2023
Research on autonomous driving SoC: driving-parking integration boosts the industry, and computing in memory (CIM) and chiplet bring technological disruption.
“Autonomous Driving SoC Research ...
China ADAS Redundant System Strategy Research Report, 2023
Redundant System Research: The Last Line of Safety for Intelligent VehiclesRedundant design refers to a technology adding more than one set of functional channels, components or parts that enable the ...
Intelligent Steering Key Components Report, 2023
Research on intelligent steering key components: four development trends of intelligent steering
The automotive chassis consists of four major systems: transmission system, steering system, driving ...
Automotive Digital Instrument Cluster Operating System Report, 2023
Digital Instrument Cluster Operating System Report: QNX commanded 71% of the Chinese intelligent vehicle cluster operating system market.
Amid the trend for the integration of digital cluster and cen...
800V High Voltage Platform Research Report, 2023
How to realize the commercialization of 800V will play a crucial part in the strategy of OEMs.
As new energy vehicles and battery technology boom, charging and battery swapping in the new energy vehi...
Automotive Intelligent Cockpit Platform Research Report, 2023
Intelligent cockpit platform research: the boundaries between vehicles and PCs are blurring, and there are several feasible paths for cockpit platforms.
Automotive Intelligent Cockpit Platform Resea...
Global and China Automotive Wireless Communication Module Industry Report,2023
Vehicle communication module research: 5G R16+C-V2X module, smart SiP module and other new products spring up.
In 2022, 4G modules swept 84.3% of the vehicle communication module market....
Intelligent Vehicle Cockpit-Driving Integration Research Report, 2023
Cockpit-Driving Integration Research: many companies are making layout and may implement it during 2024-2025.
1. What is the real cockpit-driving integration?
At present, automotive electroni...