Global and China Automotive Operating System (OS) Industry Report, 2019-2020
  • Apr.2020
  • Hard Copy
  • USD $3,600
  • Pages:180
  • Single User License
    (PDF Unprintable)       
  • USD $3,400
  • Code: TY001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,000
  • Hard Copy + Single User License
  • USD $3,800
      

With advances in smart cockpit and intelligent driving, and enormous strides of Tesla, OEMs care more about automotive operating system (OS). Yet, it is by no means easy for both new carmakers and traditional OEMs to develop base software for intelligent cars. It is in the report that world’s vehicle OS vendors are compared and analyzed.

Auto OS is generally classified into four types:

1) Basic auto OS: it refers to base auto OS such as AliOS, QNX, Linux, including all base components like system kernel, underlying driver and virtual machine.

2) Custom-made auto OS: it is deeply developed and tailored on the basis of basic OS (together with OEMs and Tier 1 suppliers) to eventually bring cockpit system platform or automated driving system platform into a reality. Examples are Baidu in-car OS and VW.OS.

3) ROM auto OS: Customized development is based on Android (or Linux), instead of changing system kernel. MIUI is the typical system applied in mobile phone. Benz, BMW, NIO, XPeng and CHJ Automotive often prefer to develop ROM auto OS.

4) Super auto APP (also called phone mapping system) refers to a versatile APP integrating map, music, voice, sociality, etc. to meet car owners’ needs. Examples are Carlife and CarPlay.

OEMs are not only striving to gain control of vehicle base software and hardware and apt to use neutral OS, but exerting itself to reduce the development cycle and costs by more collaborations and leveraging open source software organizations.

Preference to Neutral and Free OS
It can be seen in the table below that most Chinese automakers select Android, while foreign peers choose AGL. Both Android and and AGL are neutral and free operating systems.

os_副本.png

AGL now has the support of 11 OEMs including Toyota, VW, Daimler, Hyundai, Mazda, Honda, Mitsubishi, Subaru, Nissan, SAIC , etc.

AGL addresses 70% of OS development work, while the remaining 30% can be developed by OEMs. This facilitates development progress and cuts costs significantly.

More than 140 AGL members work together to develop a common platform for infotainment, which will be further available to ADAS, OTA, gateway, V2X and automated driving in the future.

ANDROID ecosystem, compared with AGL, is more mature and widely used by Chinese OEMs. However, OEMs felt risky to apply ANDROID as Google banned Huawei from using the Google Mobile Services (GMS) on Huawei phones in 2019, giving vitality to other operating systems. For instance, AliOS has already been seen in at least nine auto brands.

Reduce Development Cycle and Costs with the Help of Open Source Software Organizations
The GENIVI Alliance was jointly founded by giants like BMW, GM and Intel in 2009, aiming to offer applicable standards and open source codes for in-vehicle infotainment (IVI) platform. The alliance associates with the users of Android, AUTOSAR, Linux, and other in-car software and the solution suppliers to form a productive and collaborative community of 100+ members worldwide encompassing leading automakers, Tier 1 suppliers, semiconductor suppliers, software developers and service providers. GENIVI alliance always leads in field of open source cockpit software development.

The successful operation of GENIVI Alliance shows the industry’s urgent need to reduce development costs and avoid the duplication of development via open source software organizations.

The Autoware Foundation is a non-profit organization founded in Dec. 2018, aiming to develop open source software for autonomous vehicle. With nearly 40 members globally, Autoware is adopted by over 200 organizations in the world.

IT firms Marry Cars and Various Smart Hardware via OS
LG acquired webOS (developed by Palm) from HP in 2013, and then extended webOS as a mobile phone OS to the suitable one for TVs, smart refrigerators, smart watches and smart cars. At present, LG has sold millions of its webOS-enabled Smart TVs. In the early 2020, LG’s webOS is increasingly seen in automotive sector.

Samsung has ambitious plans for Tizen, an open operating system, which has already been found in Samsung’s wearables and smart fridges, and will be applied to floor mopping robots, washing machines, air conditioners and even cars in future.

Huawei does alike in Harmony OS, a microkernel-based, distributed OS designed to deliver a 'smooth experience' across all devices in all scenarios. It enables seamless cross-terminal synergy across multiple devices and platforms including smart phone, TV, Tablet PC and automotive infotainment.

IT companies are attempting to realize intelligence of all scenarios from mobility, home to office by centering on OS. It remains to be seen whether OEMs will adopt the plan and when the plan will be actually carried out.

1. Overview of Auto OS

1.1 Definition and Classification of Auto OS
1.2 Basic Auto OS
1.2.1 Introduction to Basic Auto OS
1.2.2 Market Share of Basic Auto OS
1.3 Customized Auto OS
1.3.2 Comparison of Customized Auto OS
1.3.3 Chip Makers and OS Customized Partners
1.4 ROM Auto OS
1.5 Automotive Phone Mapping System
1.6 Hypervisor
1.6.1 Introduction to Hypervisor
1.6.2 Hypervisor Becomes the Inevitable Choice
1.6.3 Comparison of Main Hypervisors
1.7 Hardware Platform and OS for Autonomous Driving
1.8 Automotive OS Related Standard: OSEK
1.9 Automotive OS Open Organization: GENIVI
1.9.1 Introduction to GENIVI
1.9.2 Members of GENIVI
1.9.3 Main Achievements of GENIVI
1.9.4 Examples of Achievements of GENIVI
1.9.5 Main Roles of GENIVI
1.9.6 Development Trend of GENIVI
1.10 Auto OS Open Organization: AUTOSAR
1.10.1 Introduction to AUTOSAR
1.10.2 Main Members of AUTOSAR
1.10.3 Classic AutoSAR Architecture
1.10.4 Adaptive AutoSAR Architecture
1.10.5 Comparison of Classic and Adaptive AutoSAR
1.10.6 Integration of Adaptive AutoSAR and ROS
1.11 Auto OS Open Organization: Autoware Foundation

2. Basic Auto OS and Companies

2.1 QNX
2.1.1 Introduction to QNX
2.1.2 Introduction to BlackBerry
2.1.3 QNX Cockpit Software Platform Solution
2.1.4 QNX System Architecture
2.1.5 QNX Partners
2.1.6 Trend of QNX in Automotive Field
2.2 Linux&AGL
2.2.1 Introduction to Linux&AGL
2.2.2 Main Functions of AGL
2.2.3 Members of AGL
2.2.4 Dynamics of AGL&LINUX
2.3 Android
2.3.1 Introduction to Android
2.3.2 Automotive Users of Andriod
2.3.3 Trend of Android in Automotive Field
2.4 AliOS
2.4.1 Introduction to AliOS
2.4.2 AliOS Solution
2.4.3 Main Customers of AliOS
2.4.4 Trend of AliOS in Automotive Field
2.5 webOS
2.5.1 Development Course of webOS
2.5.2 OSE Component and Development Roadmap
2.5.3 Integration with AGL
2.5.4 Trend of webOS in Automotive Field
2.6 Harmony OS
2.6.1 Introduction to Harmony OS
2.6.2 Development Course of Harmony OS
2.6.3 Huawei HiCar
2.7 VXWORKS
2.7.1 Introduction to VxWorks
2.7.2 Products of WindRiver
2.7.3 Trend of WindRiver Products in Automotive Field
2.8 Integrity
2.9 Ubuntu
2.10 ROS

3. Custom-made Auto OS

3.1 Baidu In-Car OS
3.1.1 Introduction to DuerOS
3.1.2 Applied Scenarios and Automotive Clients of DuerOS
3.1.3 Cooperation Case of DuerOS
3.1.4 Xiaodu In-Car OS
3.1.5 Cooperation Case of Apollo Xiaodu In-Car OS
3.1.6 Xiaodu In-Car OS 2020
3.1.7 Apollo Cyber RT
3.2 Qing OS
3.2.1 Introduction to Qing OS
3.2.2 Functions of Qing OS
3.2.3 Cooperative Projects of Qing OS
3.3 Mushroom OS
3.3.1 Introduction to Mushroom OS
3.3.2 Products and Services of Mushroom Car Link
3.3.3 Clients and Partners
3.4 Apex.AI
3.4.1 Introduction to Apex.AI
3.4.2 Features of Apex.OS
3.4.3 Applied Scenarios of Apex.OS and Services Provided
3.5 vw.OS
3.5.1 Introduction to vw.OS
3.5.2 Development Course of vw.OS
3.5.3 Overall Layout of VW’s Software

4. Hypervisor

4.1 Overview
4.1.1 Introduction to Hypervisor
4.1.2 Comparison of Major Hypervisors
4.2 QNX Hypervisor
4.2.1 Introduction to QNX Hypervisor
4.2.2 Features of QNX Hypervisor
4.3 ACRN
4.3.1 Introduction to ACRN
4.3.2 Composition of ACRN
4.4 COQOS Hypervisor
4.5 PikeOS
4.6 EB Corbos Hypervisor
4.7 Harman Device Virtualization
4.8 VOSYSmonitor

5. Infotainment and Smart Phone Mapping Software

5.1 Carplay
5.1.1 Introduction to Carplay
5.1.2 Main Functions of Carplay
5.2 Android Auto
5.2.1 Introduction to Android Auto
5.2.2 Development Trend of Android Auto
5.3 Carlife
5.3.1 Introduction to Carlife
5.3.2 CarLife+
5.3.3 Partial Partners
5.4 MirrorLink
5.5 Hicar
5.5.1 Introduction to Hicar
5.5.2 Dynamics and Partners of Hicar
5.6 Carbit
5.7 Qing Mobile
5.7.1 Introduction to Qing Mobile
5.7.2 Highlights of Qing Mobile

6. Auto OS Solution Providers

6.1 Neusoft
6.1.1 Introduction to NeuSAR
6.1.2 Main Products
6.1.3 Dynamics of NeuSAR
6.2 Thundersoft
6.2.1 Profile
6.2.2 Development Course
6.2.3 OS Services
6.2.4 Products
6.2.5 OS Projects
6.3 iSoft
6.3.1 Profile
6.3.2 Development Course
6.3.3 Products and Services
6.4 ArcherMind Technology
6.4.1 Profile
6.4.2 UOS
6.4.3 Main Products
 

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability Reasoning capabilities drive up the performance of foundation models. Since the second ha...

China's New Passenger Cars and Suppliers' Characteristics Research Report, 2024-2025

Trends of new cars and suppliers in 2024-2025: New in-vehicle displays are installed, promising trend of AI and cars is coming  ResearchInChina releases the China's New Passenger Cars and Suppli...

Global and China Skateboard Chassis Industry Report, 2024-2025

Skateboard chassis research: already used in 8 production models, and larger-scale production expected beyond 2025 Global and China Skateboard Chassis Industry Report, 2024-2025 released by ResearchI...

Two-wheeler Intelligence and Industry Chain Research Report, 2024-2025

Research on the two-wheeler intelligence: OEMs flock to enter the market, and the two-wheeler intelligence continues to improve This report focuses on the upgrade of two-wheeler intelligence, analyz...

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号