Automotive Intelligent Cockpit Design Trend Report, 2020
  • Dec.2020
  • Hard Copy
  • USD $3,800
  • Pages:185
  • Single User License
    (PDF Unprintable)       
  • USD $3,600
  • Code: CYH096
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,400
  • Hard Copy + Single User License
  • USD $4,000
      

Outperforming conventional one in intelligence and comfort, intelligent cockpit is born with the availability of more and more electronics onto vehicle and caters to the user’s needs better. It is evolving apace alongside rapid advances in new intelligence technologies and new materials.

It is analytically judged from major suppliers and their cockpits configured to new models as well as the cockpit configuration of concept cars launched in recent years that automotive intelligent cockpit design will be headed in directions below:

1. Intelligent cockpit will bear richer versatilities.

The upgrade of automotive electronics brings functional build-up of new products. Also, new features like driver monitor system (DMS), driving recorder, rear row entertainment display and co-pilot entertainment display enrich intelligent cockpit.

What’s more, the use of intelligent surface and multiple sensors in vehicle cockpit gives more scope to versatile cockpit design. For instance, window is not only a shelter from wind and rain but also an information display. HUD, sunroof and seat material can be used for displaying vehicle and entertainment information.

2. Multi-channel, fused interaction will become a mainstay in human-vehicle interaction. 

Apart from button, touch and voice, human-vehicle interaction modes like voice assistant, gesture recognition, fingerprint, sound localization, face recognition and holographic image have been found in vehicle models launched. For example, BMW Natural Interaction, a new interaction system planned to be available to new iNext in 2021, seamlessly integrates with voice and gesture control and gaze recognition, which allows the driver to choose what they want in the interaction system; all-new Mercedes-Benz S-Class released in September 2020, features an upgraded gesture recognition capability that enables gesture control over center console, and recognition of face direction and body language via the in-vehicle camera to open the function as needed.

设计1.png 
BMW Natural Interaction System

设计2.png 
Vision BMW i Interaction EASE Cockpit BMW displayed at CES 2020

Safety should be first taken into account in design of a simpler, easy-to-use vehicle cockpit which acts as a human-vehicle interaction interface. Hopefully, multi-channel, fused interaction modes involving fabrics interaction, window interaction, intelligent headlight interaction, iris recognition and lip reading recognition are expected to be seen in intelligent vehicles, delivering an ever better user experience.

3. 3D, multiple screen, large-size display and diversified layout will hold the trends for intelligent cockpit display.

In an age of scenario-based interaction, cockpit layout no longer follows the same pattern. Center console integrated display designs from dual-screen and triple-screen to quint-screen display, for example, have been adopted by quite a few OEMs in 2020, besides usual console and cluster designs. Moreover, new displays including control screen, co-pilot entertainment screen, rear row display and transparent A-pillar have also been deployed in cars in a new way. In 2019 NeZha U added a transparent A-pillar; a virtual rearview mirror is mounted on the door of 2020 Audi e-tron Sportback at the driver’s side. These new designs are far and away new highlights for new cars.

设计3.png 
At Auto China 2020, Audi showed an electronic rearview mirror display mounted on the door at the driver’s side

设计4.png 
At Auto China 2020, Voyah displayed Ifree concept car which is outfitted with surround screen, control display mode and retractable steering wheel

4. “User experience”-centric cockpit scenario-based interaction modes will become pervasive.

For in-vehicle scenario-based interaction modes, new models on the market deliver simple scenario interactions with smart configurations from voice and ambient light to smart seat and in-car cameras. Take Mercedes-Benz S-Class introduced in September 2020 as an example. The model’s active ambient lighting that enshrines 263 LEDs automatically projects a bright red animation as a warning throughout the cabin when necessary, and gives real-time lighting feedback when the driver controls the air-conditioning system and “Hey Mercedes” voice assistant. As new technologies mature and come into use, vehicle interior space will vary with scenarios to meet the users’ needs. And in-vehicle scenario modes (e.g., driving, rest and office) will change to build an intelligent, connected, flexible, comfortable personal interior space.

设计5.png

Mercedes-Benz S-Class rolled out in September 2020 carries the active ambient lighting with 263 LEDs.

Additionally, the ever upgraded intelligent connectivity system enables availability of such features as voice-activated shopping, WeChat vehicle version and Alipay applets onto vehicles. Scenario-based interactions between the inside and outside of vehicles make vehicles a third space.

5. The maturing new materials for intelligent surfaces will likely enable every surface with interaction ability. 

In the Vision BMW i International EASE cockpit, the seats covered by 3D knitted fabric interactive materials allows for touch control over functions. Yanfeng Global Automotive Interior Systems Co., Ltd.’s XiM21 smart cockpit combines digital technology, lighting and physical materials to realize touch switch and create ambience. There are several optional surface materials such as crystal, wood grain and fabric. The touch switch applies pressure sensing technology to ensure safety. The display module is composed of fabric decorative surface and ambient light, differing from common physical buttons.

 设计6.png
Interactive surface control switch on the seat in Yanfeng XiM21 smart cockpit

6. Touch feedback will be a key technology for higher level of safety.

Automotive HMI design follows the principle of lowering the level of driver’s distraction and making input and output of vehicle data more effective. As virtual touch buttons/switches find broader application in vehicles, touch feedback technology becomes a crucial way to improve safety. As start-ups such as Tanvas, Immersion, Boréas Technologies and Aito are deploying the technology, major tier-1 suppliers like Continental, Valeo and Bosch also race to make presence.

Bosch’s proprietary “NeoSense” touchscreen gives haptic feedback to users. With buttons on the screen touch as real ones, frequent users even don’t need to see the display to complete operation.

7. Software system will play as a key means to differentiate cockpits.

Android system has enriched IVI system scenarios and provides more personalized human-machine interfaces in efforts to make a rapider expansion in the automotive market, amid simultaneous iterations of software and hardware. To this end, vehicle software providers keep trying to sharpen their software tools and provide more efficient services for OEMs and suppliers. Based on useful functions, human-vehicle interaction interface design does not go into a rut. Some innovative UI designs like 3D vision, visualized, young, flat and card style designs have been found in new vehicles.

设计7_副本.png

1 Design Ideas and Trends of Automotive Intelligent Cockpit
1.1 Status Quo of Intelligent Cockpit Design and Layout
1.1.1 Overview of Automotive Intelligent Cockpit
1.1.2 Development Trends of Automotive Cockpit
1.1.3 Statistics of Cockpits Configured into Main New Vehicle Models, 2020
1.1.4 Cockpit Configurations of Vehicle Models
1.2 Design Trends of Automotive Intelligent Cockpit

2 Design Trends of Automotive Intelligent Cockpit Display
2.1 Cockpit Display Design
2.1.1 Status Quo of Cockpit Display Design
2.1.2 Deployments of Main Companies in Cockpit Display
2.1.3 Development Trends of Cockpit Cluster Display
2.1.4 Deployments of Main Companies in Cluster Display
2.1.5 Status Quo of Cockpit HUD
2.1.6 Deployments of Main Companies in Cockpit HUD
2.2 Design Trends of Cockpit Display

3 Design Trends of Human-Machine Interaction (HMI) for Automotive Intelligent Cockpit
3.1 Status Quo of Automotive Cockpit HMI Design
3.1.1 Overview of Automotive HMI
3.1.2 Development Course of Automotive HMI Modes
3.1.3 Main HMI Modes of Foreign and Chinese OEMs
3.1.4 Automotive HMI Design Approach
3.1.5 Automotive HMI Design Flow
3.1.6 Design and Development Workflow of Automotive HMI
3.1.7 Tools to Use in Automotive HMI Design
3.1.8 HMI Design Integration Software Tool of Main Companies
3.1.9 HMI Design Providers of Main OEMs
3.2 Design Trends of Cockpit HMI
3.3 Main Cockpit HMI Design Providers
3.3.1 ThunderSoft
3.3.1.1 HMI Design Tool -- KANZI
3.3.1.2 KANZI HMI Design Flow
3.3.1.3 HMI Design Tool Architecture
3.3.1.4 Cluster Design Platform
3.3.2 CANDERA
3.3.2.1 CGI
3.3.2.2 CGI Studio
3.3.2.3 CGI Largely in Support of Software, Hardware and Ecosystem
3.3.2.4 Cases
3.3.3 Altia
3.3.4 Qt Design
3.3.4.1 Product Architecture
3.3.4.2 Automotive Suite
3.3.4.3 Automotive Suit Tools
3.3.4.4 Automotive Suite Components
3.3.4.5 Functional Safety Architecture
3.3.4.6 Design Tools
3.3.4.7 Development Tools
3.3.4.8 Main Automotive Clients
3.3.5 EB HMI Development Platform
3.3.5.1 HMI Development Platform
3.3.5.2 Cases
3.3.6 Neusoft HMI Design
3.3.6.1 HMI Design Scheme
3.3.6.2 Intelligent Connect Ecological Platform
3.3.6.3 Full LCD Cluster Design Scheme
3.3.7 Valeo HMI Business
3.3.8 Visteon HMI Business
3.3.9 Bosch HMI
3.3.10 Faurecia HMI

4 Application and Design Trends of Automotive Smart Surface
4.1 Overview of Smart Surface Technology
4.1.1 Overview of Smart Surface
4.1.2 Features of Smart Surface Products
4.1.3 Main Components of Smart Surface
4.1.4 Smart Surface Technological Process
4.1.5 Smart Surface Industry Chain
4.1.6 Products of Main Smart Surface Suppliers
4.2 Design Trends of Smart Surface
4.3 Application Cases of Smart Surface
4.4 Main Providers of Smart Surface Technology Solutions
4.4.1 Covestro’s Smart Surface Solutions
4.4.1.1 Cases
4.4.2 Canatu
4.4.2.1 Smart Surface Solutions
4.4.2.2 3D Shaped Touch Coupled with Translucent Fabrics
4.4.2.3 3D Shaped Touch Transparent Control Switch
4.4.2.4 Cases
4.4.3 TactoTek’s Smart Surface Products
4.4.3.1 Smart Surface Technology
4.4.3.2 Main Automotive Partners and Customers
4.4.4 Yanfeng’s Smart Surface Technology
4.4.5 Continental’s Smart Surface Materials
4.4.6 Faurecia’s Smart Surface Technology

5 Application and Design Trends of Automotive Intelligent Cockpit Ambient Lighting
5.1 Interior Ambient Lighting Development
5.1.1 Overview of Automotive Ambient Lighting
5.1.2 Classification of Automotive Ambient Lighting
5.1.3 Composition of Automotive Ambient Lighting
5.1.4 Applications of Automotive Ambient Lighting
5.1.5 Interior Ambient Lighting Control Technology
5.1.6 Main Vehicle Body Network Architectures of Interior Ambient Lighting
5.1.7 Evolution of Interior Ambient Lighting
5.1.8 Interior Ambient Lighting Design Flow
5.1.9 Interior Ambient Lighting Industry Chain
5.2 Development Trends of Interior Ambient Lighting
5.3 Interaction Cases of Interior Ambient Lighting

6 Application Trends of Automotive Smart Haptic Feedback Technology
6.1.1 Overview of Haptic Feedback Technology
6.1.2 Demand for Haptic Feedback Technology
6.1.3 Haptic Feedback Modes
6.1.4 Haptic Feedback Technology Industry Chain
6.1.5 Haptic Feedback Products of Main Providers
6.1.6 Haptic Feedback Products of Main Tier1 Suppliers
6.1.7 Main OEMs’ Application of Haptic Feedback Technology
6.1.8 Cases
6.2 Main Automotive Haptic Feedback Providers
6.2.1 Tanvas’ Versatile Surface Haptic Technology
6.2.2 Borea
6.2.2.1 Patented Haptic Feedback Technology
6.2.2.2 Automotive Haptic Feedback Products
6.2.3 TDK PowerHap
6.2.3.1 Brand-new Products
6.2.3.2 Product Planning
6.2.4 Continental's Haptic Feedback Technology
6.2.4.1 Haptic Feedback Technology
6.2.4.2 Haptic Interaction Display
6.2.4.3 Morphing Control
6.2.5 Bosch’s Haptic Feedback Technology
6.2.6 Joyson Electronics’ Haptic Feedback Technology

7 Other Emerging Cockpit Interaction Technologies
7.1 Diversified Steering Wheel Designs
7.2 Car Audio
7.3 Intelligent Health Cockpit Layout
 

Ecological Domain and Automotive Hardware Expansion Research Report, 2024

Automotive Ecological Domain Research: How Will OEM Ecology and Peripheral Hardware Develop? Ecological Domain and Automotive Hardware Expansion Research Report, 2024 released by ResearchInChina ...

C-V2X and CVIS Industry Research Report, 2024

C-V2X and CVIS Research: In 2023, the OEM scale will exceed 270,000 units, and large-scale verification will start.The pilot application of "vehicle-road-cloud integration” commenced, and C-V2X entere...

Automotive Intelligent Cockpit Platform Configuration Strategy and Industry Research Report, 2024

According to the evolution trends and functions, the cockpit platform has gradually evolved into technical paths such as cockpit-only, cockpit integrated with other domains, cockpit-parking integratio...

Analysis on Huawei's Electrification, Connectivity, Intelligence and Sharing,2023-2024

Analysis on Huawei's Electrification, Connectivity, Intelligence and Sharing: Comprehensive layout in eight major fields and upgrade of Huawei Smart Selection The “Huawei Intelligent Driving Business...

Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing and Strategy Analysis Report, 2023-2024

Li Auto overestimates the BEV market trend and returns to intensive cultivation. In the MPV market, Denza D9 DM-i with the highest sales (8,030 units) in January 2024 is a hybrid electric vehicle (H...

Analysis on NIO’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Analysis on NIO’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023 Because of burning money and suffering a huge loss, many people thought NIO would soon go out of business. NI...

Monthly Monitoring Report on China Automotive Sensor Technology and Data Trends (Issue 3, 2024)

Insight into intelligent driving sensors: “Chip-based” reduces costs, and the pace of installing 3-LiDAR solutions in cars quickens. LiDARs were installed in 173,000 passenger cars in China in Q1 2024...

Autonomous Driving Simulation Industry Report, 2024

Autonomous Driving Simulation Research: Three Trends of Simulation Favoring the Implementation of High-level Intelligent Driving. On November 17, 2023, the Ministry of Industry and Information Techno...

Mobile Charging Robot Research Report, 2024

Research on mobile charging robot: more than 20 companies have come in and have implemented in three major scenarios. Mobile Charging Robot Research Report, 2024 released by ResearchInChina highlight...

End-to-end Autonomous Driving (E2E AD) Research Report, 2024

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving 1. Status quo of end-to-end solutions in ChinaAn end-to-end autonomous driving system refers to direct mappi...

Monthly Monitoring Report on China Automotive Intelligent Driving Technology and Data Trends (Issue 2, 2024)

Insight into intelligent driving: ECARX self-develops intelligent driving chips, and L2.5 installation soared by 175% year on year.   Based on the 2023 version, the 2024 version of Monthly...

Monthly Monitoring Report on China Automotive Intelligent Cockpit Technology and Data Trends (Issue 2, 2024)

Insight into intelligent cockpit: the trend towards large screens is obvious, with >10" center console screens sweeping over 80%. Based on the 2023 Edition, the 2024 Edition of Monthly Monitoring...

China Intelligent Driving Fusion Algorithm Research Report, 2024

Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and enhanced planning and control become the trend. China Intelligent Driving Fusion Algorithm Research Report, 2024 ...

Automotive Electronics OEM/ODM/EMS Industry Report, 2024

Automotive electronics OEM/ODM/EMS research: top players’ revenue has exceeded RMB10 billion, and new entrants have been coming in.  At present, OEMs in the Chinese automotive electronics indus...

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号