OEM Cyber Security Layout Report, 2020
  • Dec.2020
  • Hard Copy
  • USD $3,400
  • Pages:130
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: JH001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Research into automotive cyber security: server and digital key are the ports vulnerable to attacks, for which OEMs have stepped up efforts in cyber security.

With advances in the CASE (Connected, Autonomous, Shared, and Electrified) trend, cars are going smarter ever with functional enrichment. Statistically, the installation rate of telematics feature to new cars in China is over 50% from January to October of 2020, a figure projected to rise to 75% or so in 2025. In terms of functionality, intelligent cockpit and advanced automated driving become trending, and the features such as multi-modal interaction, multi-display interaction, 5G connectivity, V2X, OTA and digital key finds ever broader application alongside the soaring number of vehicle control codes and more port vulnerabilities to safety threat.

Currently, the automotive cyber security events arise mainly from attacks on server, digital key, mobile APP, OBD port among others.

Server acts as the most important port for cyber security, which is exposed to the attack by hackers on operating system, database, TSP server, OTA server and the like, thus issuing in data tampering, damage and vehicle safety accidents. Most tools of assault on servers are remotely accessible with lower costs, while the data storage over servers is of paramount importance, all of which lead to often a rather high share of attacks on servers.

Digital key, as the second port that matters most to cyber security, is a common media subject to vehicle intrusion and theft. In 2020, there will be 300,000 Bluetooth digital key installs in China, coupled with an installation rate at about 4%, with such more functionalities besides lock/unlock & start as account log-in, key sharing, vehicle trajectory record, and parcel delivery to cars, which has ever more implications on vehicle safety.

B 信息安全 1_副本.png

Different auto brands are subject to varied attack on vehicle security.

The smarter a car is, the more vulnerable to security attacks will be. Amid the intelligence trend, all OEMs, whatever Mercedes-Benz, BMW, Audi, VW, Toyota, Honda or Hyundai, have varied exposure to security attacks.

B 信息安全 2_副本.png

In March 2020, key encryption approaches of OEMs like Toyota, Hyundai and KIA were reported to have limitations with a possibility of intrusions and thefts largely due to the vulnerabilities of TI’s DST80 encryption system employed by them. A hacker just stands near the car that packs DST80 remote control key, using the inexpensive Proxmark RFID reader/transmitter for the ‘identity theft’ of the key and thus getting the encrypted information.

B 信息安全 3.png

OEM quicken their presence in cyber security

To address serious challenges in automotive cyber security, the OEMs are sparing no efforts in security improvement in many aspects: a) information management inside the company and optimization of R&D process; 2) to build a team intended for cyber security; 3) cyber security protection of telematics.

> European and American OEMs: Diversified deployments of cyber security protection
The automakers from Europe and America are pushing ahead with cyber security construction roundly with technical superiorities, with a tightened control on information security management inside the company apart from improvements in cyber security protection of telematics. As concerns team construction, the majority of European and American OEMs as usual set up either an independent cyber security division or a subsidiary to ensure information security during a vehicle lifespan.

Mercedes-Benz, for instance, has such actions for cyber security in the three below:
Cloud computing: vehicle data protection enabled by a cloud platform through which the car owner takes control of data openness to the outside while driving, and at the same time relevant information will be eliminated automatically after the car owner leaves his/her car;
Factory: partnership with telecom carriers and equipment vendors to set up intelligent vehicle manufacturing factories with production data safety enabled by 5G mobile network;
Vulnerability protection: joins forces with third-party cybersecurity providers to test and repair the potential vulnerabilities of intelligent connected vehicle.

> Japanese and Korean OEMs: with a more focus on cyber security protection and management inside the company

Nissan Motor, for example, proceeds with intro-company management on information security and perfects the regulations concerned. Over the recent years, Nissan has been improving its R&D management system and cyber security platform, with its Tel Aviv-based joint innovation laboratory and collaborations with Israeli start-ups on cyber security testing and study. As yet, Nissan has more than ten cooperative joint prototype projects.

> Chinese OEMs: the emerging forces go ahead of the rest

The emerging carmakers are commendable in cyber security protection. Cases include XPENG Motors that boast concurrent deployments over cloud, vehicle and mobile phone by building a security team on its own and the partnerships with Aliyun, Irdeto, and Keen Security Lab of Tencent in order for a proactive protection system; and NIO that has built a X-Dragon multi-dimensional protection system through a self-owned security team and multi-party cooperation.

Also, the time-honored Chinese automakers follow suit, such as Dongfeng Motor, SAIC, GAC and BAIC that all prioritize the security stewardship during their life cycle. As concerns its overall deployment, SAIC, for example, incorporates its subordinates into the group’s cyber security protection and management system and applies the data encryption software (GS-EDS system) with one accord for data safety as a whole; secondly, SAIC builds a cloud platform independently and a proprietary cloud computing center delivering cloud-based security services; last, SAIC founded SAIC Lingshu Software Co., Ltd in charge of developing basic technology platform and sharpening software R&D competence.

B 信息安全 4_副本.png

OEMs have ever broader cooperation in cyber security.

In addition to security enhancement, OEMs are vigorously seeking for external collaborations on vehicle, communication, platform, data, and application, to name a few.

B 信息安全 5_副本.png

1. Overview of IoV Cyber Security 
1.1 Overview
1.1.1 Definition
1.1.2 IoV Cyber Security Protection
1.2 IoV Cyber Security Technology Application
1.2.1 T-BOX Safety Technology Application
1.2.2 IVI Safety Technology Application
1.2.3 Safety Technology Application of Digital Key System
1.2.4 PKI Technology Application for Car Cloud Network Communication Security
1.2.5 FOTA Safety Technology Application for Onboard System
1.3 Automotive Cyber Security Standard Development at Home and Abroad
1.3.1 Overview of Automotive Cyber Security Standard Development in China and the World
1.3.2 Major International Policies and Regulations on IoV Cyber Security
1.3.3 Major European Policies and Regulations on IoV Cyber Security
1.3.4 Major American and Japanese Policies and Regulations on IoV Cyber Security
1.3.5 Chinese IoV Cyber Security Standard System Architecture
1.3.6 Chinese IoV Cyber Security Standard Construction
1.4 Status Quo and Trend of Chinese Automotive Cyber Security 
1.4.1 Impact of  CASE on Cyber Security
1.4.2 Knowledge of Industry Insiders on Status Quo of IoV Cyber Security
1.4.3 Impact of Vehicle E/E Architecture on Cyber Security
1.4.4 Automotive Cyber Security Technology Development Strategy: Cloud
1.4.5 Automotive Cyber Security Technology Development Strategy: Communication
1.4.6 Automotive Cyber Security Technology Development Strategy: Vehicle

2. Status Quo of Automotive Cyber Security Industry 
2.1 Analysis of OEM Cyber Security Events
2.1.1 Analysis of OEM Cyber Security Events
2.1.2 Analysis of OEM Cyber Security Events: Event Summary
2.1.3 Analysis (I) of OEM Cyber Security Event (Application)
2.1.4 Analysis (II) of OEM Cyber Security Event (Application)
2.1.5 Analysis (III) of OEM Cyber Security Event (Platform)
2.1.6 Analysis (IV) of OEM Cyber Security Event (Platform)
2.1.7 Analysis (V) of OEM Cyber Security Event (Vehicle)
2.1.8 Analysis (VI) of OEM Cyber Security Event (Vehicle)
2.1.9 Analysis (VII) of OEM Cyber Security Event (Communication)
2.1.10 Analysis (VIII) of OEM Cyber Security Event (Communication)
2.2 Comparison of OEM Cyber Security Layouts
2.2.1 European and American OEMs
2.2.2 Japanese and Korea OEMs
2.2.3 Chinese OEMs
2.3 Cyber Security Collaborations of OEMs
2.3.1 European and American OEMs
2.3.2 Japanese and Korea OEMs 
2.3.3 Chinese OEMs
2.3.4 Chinese Automotive Cyber Security Industry Map 

3. Cyber Security Layouts of European and American OEMs
3.1 Mercedes-Benz
3.1.1 Cyber Security Layout
3.1.2 Cyber Security Technology Route
3.1.3 Cyber Security Partners
3.2 BMW
3.2.1 Cyber Security Layout
3.2.2 Cyber Security R&D System Construction
3.2.3 Cyber Security Partners
3.3 Audi
3.3.1 Cyber Security Layout
3.3.2 Cyber Security R&D System Construction
3.3.3 Cyber Security Partners
3.4 VW
3.4.1 Cyber Security Layout
3.4.2 Cyber Security R&D System Construction
3.4.3 Cyber Security Partners
3.5 Volvo
3.5.1 Cyber Security Layout
3.5.2 Cyber Security R&D System Construction
3.5.3 Cyber Security Partners
3.6 Ford
3.6.1 Cyber Security Layout
3.6.2 Cyber Security R&D System Construction
3.6.3 Cyber Security Partners
3.7GM
3.7.1 Cyber Security Layout
3.7.2 Cyber Security R&D System Construction
3.7.3 Cyber Security Partners

4. Cyber Security Layout of Japanese and Korean OEMs
4.1 Toyota
4.1.1 Cyber Security Layout
4.1.2 Cyber Security Technology Route
4.1.3 Cyber Security Partners
4.2 Honda
4.2.1 Cyber Security Layout
4.2.2 Cyber Security R&D System Construction
4.2.3 Cyber Security Partners
Software
4.3 Nissan
4.3.1 Cyber Security Layout
4.3.2 Cyber Security R&D System Construction
4.3.3 Cyber Security Partners
4.4 Hyundai
4.4.1 Cyber Security Layout
4.4.2 Cyber Security Technical Route
4.4.3 Cyber Security Partners

5. Cyber Security Layout of Chinese OEMs
5.1 Xpeng Motors
5.1.1 Cyber Security Layout
5.1.2 Cyber Security Technology Route
5.1.3 Cyber Security Partners
5.2 NIO
5.2.1 Cyber Security Layout
5.2.2 Cyber Security Technology Route
5.2.3 Cyber Security Partners
5.3 Lixiang
5.3.1 Cyber Security Layout
5.3.2 Cyber Security Technology Route
5.3.3 Cyber Security Partners
5.4 WM Motor
5.4.1 Cyber Security Layout
5.4.2 Cyber Security Technology Route
5.4.3 Cyber Security Partners
5.5 Dongfeng Motor
5.5.1 Cyber Security Layout
5.5.2 Cyber Security Technology Route
5.5.3 Cyber Security Partners
5.6 SAIC
5.6.1 Cyber Security Layout
5.6.2 Cyber Security Technology Route
5.6.3 Cyber Security Partners
5.7 BAIC
5.7.1 Cyber Security Layout
5.7.2 Cyber Security Technology Route
5.7.3 Cyber Security Partners
5.8 GAC
5.8.1 Cyber Security Layout
5.8.2 Cyber Security Technology Route
5.8.3 Cyber Security Partners
 

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

New Energy Vehicle Electric Drive and Power Domain industry Report, 2024

OEMs lead the integrated development of "3 + 3 + X platform", and the self-production rate continues to increase The electric drive system is developing around technical directions of high integratio...

Global and China Automotive Smart Glass Research Report, 2024

Research on automotive smart glass: How does glass intelligence evolve  ResearchInChina has released the Automotive Smart Glass Research Report 2024. The report details the latest advances in di...

Passenger Car Brake-by-Wire and AEB Market Research Report, 2024

1. EHB penetration rate exceeded 40% in 2024H1 and is expected to overshoot 50% within the yearIn 2024H1, the installations of electro-hydraulic brake (EHB) approached 4 million units, a year-on-year ...

Autonomous Driving Data Closed Loop Research Report, 2024

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop? As software 2.0 and end-to-end technology are introduced into a...

Research Report on Intelligent Vehicle E/E Architectures (EEA) and Their Impact on Supply Chain in 2024

E/E Architecture (EEA) research: Advanced EEAs have become a cost-reducing tool and brought about deep reconstruction of the supply chain The central/quasi-central + zonal architecture has become a w...

Automotive Digital Power Supply and Chip Industry Report, 2024

Research on automotive digital power supply: looking at the digital evolution of automotive power supply from the power supply side, power distribution side, and power consumption side This report fo...

Automotive Software Business Models and Suppliers’ Layout Research Report, 2024

Software business model research: from "custom development" to "IP/platformization", software enters the cost reduction cycle According to the vehicle software system architecture, this report classi...

Passenger Car Intelligent Steering Industry Research Report, 2024

Intelligent Steering Research: Steer-by-wire is expected to land on independent brand models in 2025 The Passenger Car Intelligent Steering Industry Research Report, 2024 released by ResearchInChina ...

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024 highlights the following:Passenger car wireless charging (principle, standards, and Qi2.0 protocol);Passenger car mobile phone ...

Automotive Smart Exteriors Research Report, 2024

Research on automotive smart exteriors: in the trend towards electrification and intelligence, which exteriors will be replaced by intelligence The Automotive Smart Exteriors Research Report, 2024 r...

Automotive Fragrance and Air Conditioning System Research Report, 2024

Research on automotive fragrance/air purification: With surging installations, automotive olfactory interaction is being linked with more scenarios. As users require higher quality of personalized, i...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号