OEM Cyber Security Layout Report, 2020
  • Dec.2020
  • Hard Copy
  • USD $3,400
  • Pages:130
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: JH001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Research into automotive cyber security: server and digital key are the ports vulnerable to attacks, for which OEMs have stepped up efforts in cyber security.

With advances in the CASE (Connected, Autonomous, Shared, and Electrified) trend, cars are going smarter ever with functional enrichment. Statistically, the installation rate of telematics feature to new cars in China is over 50% from January to October of 2020, a figure projected to rise to 75% or so in 2025. In terms of functionality, intelligent cockpit and advanced automated driving become trending, and the features such as multi-modal interaction, multi-display interaction, 5G connectivity, V2X, OTA and digital key finds ever broader application alongside the soaring number of vehicle control codes and more port vulnerabilities to safety threat.

Currently, the automotive cyber security events arise mainly from attacks on server, digital key, mobile APP, OBD port among others.

Server acts as the most important port for cyber security, which is exposed to the attack by hackers on operating system, database, TSP server, OTA server and the like, thus issuing in data tampering, damage and vehicle safety accidents. Most tools of assault on servers are remotely accessible with lower costs, while the data storage over servers is of paramount importance, all of which lead to often a rather high share of attacks on servers.

Digital key, as the second port that matters most to cyber security, is a common media subject to vehicle intrusion and theft. In 2020, there will be 300,000 Bluetooth digital key installs in China, coupled with an installation rate at about 4%, with such more functionalities besides lock/unlock & start as account log-in, key sharing, vehicle trajectory record, and parcel delivery to cars, which has ever more implications on vehicle safety.

B 信息安全 1_副本.png

Different auto brands are subject to varied attack on vehicle security.

The smarter a car is, the more vulnerable to security attacks will be. Amid the intelligence trend, all OEMs, whatever Mercedes-Benz, BMW, Audi, VW, Toyota, Honda or Hyundai, have varied exposure to security attacks.

B 信息安全 2_副本.png

In March 2020, key encryption approaches of OEMs like Toyota, Hyundai and KIA were reported to have limitations with a possibility of intrusions and thefts largely due to the vulnerabilities of TI’s DST80 encryption system employed by them. A hacker just stands near the car that packs DST80 remote control key, using the inexpensive Proxmark RFID reader/transmitter for the ‘identity theft’ of the key and thus getting the encrypted information.

B 信息安全 3.png

OEM quicken their presence in cyber security

To address serious challenges in automotive cyber security, the OEMs are sparing no efforts in security improvement in many aspects: a) information management inside the company and optimization of R&D process; 2) to build a team intended for cyber security; 3) cyber security protection of telematics.

> European and American OEMs: Diversified deployments of cyber security protection
The automakers from Europe and America are pushing ahead with cyber security construction roundly with technical superiorities, with a tightened control on information security management inside the company apart from improvements in cyber security protection of telematics. As concerns team construction, the majority of European and American OEMs as usual set up either an independent cyber security division or a subsidiary to ensure information security during a vehicle lifespan.

Mercedes-Benz, for instance, has such actions for cyber security in the three below:
Cloud computing: vehicle data protection enabled by a cloud platform through which the car owner takes control of data openness to the outside while driving, and at the same time relevant information will be eliminated automatically after the car owner leaves his/her car;
Factory: partnership with telecom carriers and equipment vendors to set up intelligent vehicle manufacturing factories with production data safety enabled by 5G mobile network;
Vulnerability protection: joins forces with third-party cybersecurity providers to test and repair the potential vulnerabilities of intelligent connected vehicle.

> Japanese and Korean OEMs: with a more focus on cyber security protection and management inside the company

Nissan Motor, for example, proceeds with intro-company management on information security and perfects the regulations concerned. Over the recent years, Nissan has been improving its R&D management system and cyber security platform, with its Tel Aviv-based joint innovation laboratory and collaborations with Israeli start-ups on cyber security testing and study. As yet, Nissan has more than ten cooperative joint prototype projects.

> Chinese OEMs: the emerging forces go ahead of the rest

The emerging carmakers are commendable in cyber security protection. Cases include XPENG Motors that boast concurrent deployments over cloud, vehicle and mobile phone by building a security team on its own and the partnerships with Aliyun, Irdeto, and Keen Security Lab of Tencent in order for a proactive protection system; and NIO that has built a X-Dragon multi-dimensional protection system through a self-owned security team and multi-party cooperation.

Also, the time-honored Chinese automakers follow suit, such as Dongfeng Motor, SAIC, GAC and BAIC that all prioritize the security stewardship during their life cycle. As concerns its overall deployment, SAIC, for example, incorporates its subordinates into the group’s cyber security protection and management system and applies the data encryption software (GS-EDS system) with one accord for data safety as a whole; secondly, SAIC builds a cloud platform independently and a proprietary cloud computing center delivering cloud-based security services; last, SAIC founded SAIC Lingshu Software Co., Ltd in charge of developing basic technology platform and sharpening software R&D competence.

B 信息安全 4_副本.png

OEMs have ever broader cooperation in cyber security.

In addition to security enhancement, OEMs are vigorously seeking for external collaborations on vehicle, communication, platform, data, and application, to name a few.

B 信息安全 5_副本.png

1. Overview of IoV Cyber Security 
1.1 Overview
1.1.1 Definition
1.1.2 IoV Cyber Security Protection
1.2 IoV Cyber Security Technology Application
1.2.1 T-BOX Safety Technology Application
1.2.2 IVI Safety Technology Application
1.2.3 Safety Technology Application of Digital Key System
1.2.4 PKI Technology Application for Car Cloud Network Communication Security
1.2.5 FOTA Safety Technology Application for Onboard System
1.3 Automotive Cyber Security Standard Development at Home and Abroad
1.3.1 Overview of Automotive Cyber Security Standard Development in China and the World
1.3.2 Major International Policies and Regulations on IoV Cyber Security
1.3.3 Major European Policies and Regulations on IoV Cyber Security
1.3.4 Major American and Japanese Policies and Regulations on IoV Cyber Security
1.3.5 Chinese IoV Cyber Security Standard System Architecture
1.3.6 Chinese IoV Cyber Security Standard Construction
1.4 Status Quo and Trend of Chinese Automotive Cyber Security 
1.4.1 Impact of  CASE on Cyber Security
1.4.2 Knowledge of Industry Insiders on Status Quo of IoV Cyber Security
1.4.3 Impact of Vehicle E/E Architecture on Cyber Security
1.4.4 Automotive Cyber Security Technology Development Strategy: Cloud
1.4.5 Automotive Cyber Security Technology Development Strategy: Communication
1.4.6 Automotive Cyber Security Technology Development Strategy: Vehicle

2. Status Quo of Automotive Cyber Security Industry 
2.1 Analysis of OEM Cyber Security Events
2.1.1 Analysis of OEM Cyber Security Events
2.1.2 Analysis of OEM Cyber Security Events: Event Summary
2.1.3 Analysis (I) of OEM Cyber Security Event (Application)
2.1.4 Analysis (II) of OEM Cyber Security Event (Application)
2.1.5 Analysis (III) of OEM Cyber Security Event (Platform)
2.1.6 Analysis (IV) of OEM Cyber Security Event (Platform)
2.1.7 Analysis (V) of OEM Cyber Security Event (Vehicle)
2.1.8 Analysis (VI) of OEM Cyber Security Event (Vehicle)
2.1.9 Analysis (VII) of OEM Cyber Security Event (Communication)
2.1.10 Analysis (VIII) of OEM Cyber Security Event (Communication)
2.2 Comparison of OEM Cyber Security Layouts
2.2.1 European and American OEMs
2.2.2 Japanese and Korea OEMs
2.2.3 Chinese OEMs
2.3 Cyber Security Collaborations of OEMs
2.3.1 European and American OEMs
2.3.2 Japanese and Korea OEMs 
2.3.3 Chinese OEMs
2.3.4 Chinese Automotive Cyber Security Industry Map 

3. Cyber Security Layouts of European and American OEMs
3.1 Mercedes-Benz
3.1.1 Cyber Security Layout
3.1.2 Cyber Security Technology Route
3.1.3 Cyber Security Partners
3.2 BMW
3.2.1 Cyber Security Layout
3.2.2 Cyber Security R&D System Construction
3.2.3 Cyber Security Partners
3.3 Audi
3.3.1 Cyber Security Layout
3.3.2 Cyber Security R&D System Construction
3.3.3 Cyber Security Partners
3.4 VW
3.4.1 Cyber Security Layout
3.4.2 Cyber Security R&D System Construction
3.4.3 Cyber Security Partners
3.5 Volvo
3.5.1 Cyber Security Layout
3.5.2 Cyber Security R&D System Construction
3.5.3 Cyber Security Partners
3.6 Ford
3.6.1 Cyber Security Layout
3.6.2 Cyber Security R&D System Construction
3.6.3 Cyber Security Partners
3.7GM
3.7.1 Cyber Security Layout
3.7.2 Cyber Security R&D System Construction
3.7.3 Cyber Security Partners

4. Cyber Security Layout of Japanese and Korean OEMs
4.1 Toyota
4.1.1 Cyber Security Layout
4.1.2 Cyber Security Technology Route
4.1.3 Cyber Security Partners
4.2 Honda
4.2.1 Cyber Security Layout
4.2.2 Cyber Security R&D System Construction
4.2.3 Cyber Security Partners
Software
4.3 Nissan
4.3.1 Cyber Security Layout
4.3.2 Cyber Security R&D System Construction
4.3.3 Cyber Security Partners
4.4 Hyundai
4.4.1 Cyber Security Layout
4.4.2 Cyber Security Technical Route
4.4.3 Cyber Security Partners

5. Cyber Security Layout of Chinese OEMs
5.1 Xpeng Motors
5.1.1 Cyber Security Layout
5.1.2 Cyber Security Technology Route
5.1.3 Cyber Security Partners
5.2 NIO
5.2.1 Cyber Security Layout
5.2.2 Cyber Security Technology Route
5.2.3 Cyber Security Partners
5.3 Lixiang
5.3.1 Cyber Security Layout
5.3.2 Cyber Security Technology Route
5.3.3 Cyber Security Partners
5.4 WM Motor
5.4.1 Cyber Security Layout
5.4.2 Cyber Security Technology Route
5.4.3 Cyber Security Partners
5.5 Dongfeng Motor
5.5.1 Cyber Security Layout
5.5.2 Cyber Security Technology Route
5.5.3 Cyber Security Partners
5.6 SAIC
5.6.1 Cyber Security Layout
5.6.2 Cyber Security Technology Route
5.6.3 Cyber Security Partners
5.7 BAIC
5.7.1 Cyber Security Layout
5.7.2 Cyber Security Technology Route
5.7.3 Cyber Security Partners
5.8 GAC
5.8.1 Cyber Security Layout
5.8.2 Cyber Security Technology Route
5.8.3 Cyber Security Partners
 

Monthly Monitoring Report on China Automotive Sensor Technology and Data Trends (Issue 3, 2024)

Insight into intelligent driving sensors: “Chip-based” reduces costs, and the pace of installing 3-LiDAR solutions in cars quickens. LiDARs were installed in 173,000 passenger cars in China in Q1 2024...

Autonomous Driving Simulation Industry Report, 2024

Autonomous Driving Simulation Research: Three Trends of Simulation Favoring the Implementation of High-level Intelligent Driving. On November 17, 2023, the Ministry of Industry and Information Techno...

Mobile Charging Robot Research Report, 2024

Research on mobile charging robot: more than 20 companies have come in and have implemented in three major scenarios. Mobile Charging Robot Research Report, 2024 released by ResearchInChina highlight...

End-to-end Autonomous Driving (E2E AD) Research Report, 2024

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving 1. Status quo of end-to-end solutions in ChinaAn end-to-end autonomous driving system refers to direct mappi...

Monthly Monitoring Report on China Automotive Intelligent Driving Technology and Data Trends (Issue 2, 2024)

Insight into intelligent driving: ECARX self-develops intelligent driving chips, and L2.5 installation soared by 175% year on year.   Based on the 2023 version, the 2024 version of Monthly...

Monthly Monitoring Report on China Automotive Intelligent Cockpit Technology and Data Trends (Issue 2, 2024)

Insight into intelligent cockpit: the trend towards large screens is obvious, with >10" center console screens sweeping over 80%. Based on the 2023 Edition, the 2024 Edition of Monthly Monitoring...

China Intelligent Driving Fusion Algorithm Research Report, 2024

Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and enhanced planning and control become the trend. China Intelligent Driving Fusion Algorithm Research Report, 2024 ...

Automotive Electronics OEM/ODM/EMS Industry Report, 2024

Automotive electronics OEM/ODM/EMS research: top players’ revenue has exceeded RMB10 billion, and new entrants have been coming in.  At present, OEMs in the Chinese automotive electronics indus...

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号