Intelligent Cockpit Domain Control Unit (DCU) and Head Unit Dismantling Report, 2023 (1)
  • Feb.2023
  • Hard Copy
  • USD $2,200
  • Pages:61
  • Single User License
    (PDF Unprintable)       
  • USD $2,000
  • Code: SDY015
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $3,000
  • Hard Copy + Single User License
  • USD $2,400

Dismantling of Head Unit and Cockpit Domain Control Unit (DCU) of NIO, Toyota and Great Wall Motor

The report highlights the dismantling of Toyota’s MT2712-based head unit, Fisker’s Intel A2960-based head unit, Great Wall Motor’s Qualcomm 8155-based head unit and NIO ET7 cockpit DCU, and estimates and analyzes Great Wall Motor’s head unit and NIO’s DCU.

This article takes NIO ET7 cockpit DCU we dismantle as an example.

"In terms of hardware, NIO ET7 packs a second-generation digital cockpit that is equipped with a 12.8-inch AMOLED center console screen, a 10.2-inch HDR digital cluster, a 6.6-inch HDR multi-function control screen in the rear row, and an enhanced head-up display (HUD) system. It runs the Banyan IVI System based on Qualcomm Snapdragon 8155 chip. The head unit carries the 16GB+256GB memory portfolio, supports multiple unlock methods like UWB digital key, and is equipped with some remote functions and AR-HUD system, as well as a built-in driving recorder.”

域控拆解 1_副本.png

Appearance and interfaces

NIO ET7 bears NIO’s second-generation cockpit DCU. Compared with the first-generation, the SoC chip of the second-generation cockpit DCU is changed from Nvidia Parker to Qualcomm SA8155P. The second-generation cockpit DCU will be applied to all NIO models.

域控拆解 2_副本.png

The interfaces on the lower side of the bottom view in the above picture, from left to right, are: center console display and rear display connector, cluster and HUD connector, 1 USB3.0 connector, 2 USB connectors, and 2 Ethernet connectors, and inside the white plastic sleeves are WiFi and Bluetooth antennas.

NIO ET7 cockpit DCU has a distinctive appearance. The heat sink on the backboard is recessed in the middle in a bid to be close to the SA8155P module that generates the most heat.

The interior of the housing of NIO ET7 cockpit DCU is relatively complicated. The inner layer of the housing is also embedded with a spongy material that absorbs impact. The holes on the right correspond to the two large capacitors on the PCB. The two capacitors are relatively high with ultra-large capacity up to 25 farads. They function as a battery. It is presumed that the two capacitors are added in the consideration of the fact that sometimes when a vehicle is parked for too long, the battery runs out of power but some wireless remote vehicle control functions still need to work.

域控拆解 3_副本.png

Unlike most vehicle PCBs with connectors on one side, NIO’s cockpit DCU PCB has connectors on both sides.

CPU and memory chip

域控拆解 4_副本.png

In the center of the DCU PCB lies the SoC module which accommodates one SA8155P chip, two PMM8155AU power management chips and two Micron memory chips.

Next to the capacitor side of the SoC module is a 256GB UFS 2.1 memory chip from Samsung. UFS 2.1 features working voltage of 1.8/3.3V, G3 2Lane interfaces, and temperature range of -40℃~105℃. The estimated price range of this chip is USD15-20.

域控拆解 5_副本.png

Ethernet switch

The relatively big chip next to the MCU and the capacitor is an 88EA6321 Ethernet switch provided by Marvell.

域控拆解 6_副本.png

The picture above shows the internal framework of Marvell 88E6321, a 7-port Ethernet switch for automotive EAVB. 88E6321 carries two IEEE 10/100/1000BASE-T/TX/T interfaces (corresponding to RJ45, namely, a conventional registered jack as often said), two RGMII/xMII interfaces or one GMII interface, two SGMII/SerDes interfaces, and one RGMII/xMII interface. The MII (medium-independent interface) is a standard interface connecting the MAC and the PHY. It is an IEEE-802.3 defined Ethernet industry standard.

10/100/1000BASE-T/TX/T refers to the transmission cable. Port 2, 5 and 6 can be configured as MAC or PHY mode, and all support RGMII/RMII/MII. Port 2 and 6 also support GMII. Port 3 and 4 support 10M/100M/1000M adaptive Ethernet interfaces. Port 0 and 1 support 100M/1000M optical ports (SFP). 88E6321 launched around 2014 is an old product that does not support the latest TSN. It is not an automotive Ethernet switch in the strict sense, and is currently sold at a markdown price of about USD10-15. (MII refers to Medium Independent Interface; RMII, Reduced MII; SMII, Serial MII; GMII, Giga MII)

Video I/O

域控拆解 7_副本.png

The picture above is the video input part of ET7 cockpit DCU. It uses a total of 4 serializer/deserializer chips (all from MAXIM, a company acquired by ADI), including two MAX96712 deserializer chips, one of which corresponds to the inputs of the four 3-megapixel surround-view cameras of NIO ET7.

域控拆解 8_副本.png

The picture above is the internal framework of MAX96712 which enables MIPI CSI-2 4Lane reception and delivers the maximum bandwidth of 6Gbps, that is, it can connect four 4-megapixel cameras and outputs two channels. It is currently the highest bandwidth deserializer chip priced at about USD15-20.

域控拆解 9_副本.png

The video output part of NIO’s head unit in the picture above uses three TI serializer chips and video format conversion. All the three serializer chips require signing a non-disclosure agreement (NDA). SA8155 can support a variety of up to 24-megapixel display configuration interfaces (e.g., at most three 4K60 displays) via three native displays. It supports two 4-lane DSI D-PHY at 2.5 Gbps per lane or two 3-trio C-PHY at 5.7 Gbps per lane, an integrated display port shared with USB 3.1 Gen 2 at 8.1 Gbps/lane. It allows for 4K60 display ports concurrency and USB 3.0 operation, and enables other display single interfaces (DDSI) by using DisplayPort multi-stream transport (MST) and dual displays.

Back of PCB

域控拆解 10_副本.png

There is a flying line on the front and back of the PCB. The flying line on the back is very obvious, about 4.5cm in length, which means that the PCB needs hand soldering in the end. This will affect efficiency and quality stability, and will also push up the overall cost of the cockpit DCU.

1 Dismantling of Toyota’s Low-to-mid-end Head Unit
1.1 Front Appearance of the Head Unit 
1.2 Back of the Display Module
1.3 Display Module Motherboard 
1.4 Internal Structure
1.5 Upper PCB of the Head Unit
1.5.1 Bluetooth and WiFi Module
1.5.2 LVDS Receiver and Memory Chip
1.5.3 Video I/O
1.6 Lower PCB of the Head Unit 
1.6.1 Audio DSP
1.6.2 MCU
1.7 Parameters of the Key Device: Chip

2 Dismantling of Fisker’s Head Unit 
2.1 Introduction to Fisker
2.2 Boom Diagram of the Head Unit
2.3 Appearance & Interfaces
2.4 Upper PCB of the Head Unit
2.4.1 Main Control Chip and Memory Chip
2.4.2 FPGA Chip and FPD-LINK Chip
2.5 Lower PCB and MCU of the Head Unit
2.5.1 Digital Audio Broadcasting Chip and AM/FM Radio Tuner Chip
2.6 Parameters of the Key Device: FPGA
2.7 Parameters of the Key Device: Digital Audio Broadcasting (DAB) Chip

3 Dismantling of Great Wall Coffee Intelligent Head Unit 
3.1 Dimensions
3.1.1 Top View
3.1.2 Side View
3.2 Interfaces of the Head Unit
3.3 Front of the Upper PCB of the Head Unit
3.4 Back of the Upper PCB of the Head Unit
3.5 Front of the Lower PCB of the Head Unit
3.6 Back of the Lower PCB of the Head Unit
3.7 Key Devices Suppliers and Cost Estimation - Summary
3.7.1 Parameters of the Key Device: Ethernet Switch
3.7.2 Parameters of the Key Device: Audio Processing Chip
3.7.3 Parameters of the Key Device: Serializer and Video Conversion
3.7.4 Parameters of the Key Device: MCU

4 Dismantling of NIO ET7 Cockpit DCU 
4.1 Appearance Structure of the DCU
4.2 Internal Structure of the DCU
4.3 Interfaces of the DCU
4.4 Front of the DCU PCB 
4.4.1 Chip Module
4.4.2 Memory Chip
4.4.3 MCU
4.4.4 Ethernet Switch
4.4.5 Ethernet Physical Layer Chip
4.4.6 Serializer/Deserializer Chip
4.4.7 Video Output
4.4.8 WiFi and Bluetooth Module
4.4.9 Radio Chip
4.4.10 Capacitor
4.5 Back of the DCU PCB 
4.6 Parameters and Cost Estimation of Key Devices
4.6.1 Parameters of the Key Device: MCU
4.6.2 Parameters of the Key Device: Ethernet Switch
4.6.3 Parameters of the Key Device: Deserializer Chip
4.6.4 Parameters of the Key Device: CMOS Real Time Clock (RTC) and Calendar

China Automotive Fragrance and Air Purification Systems Research Report, 2023

Automotive fragrance and air purification systems: together to create a comfortable and healthy cockpitTechnology trend: intelligence of fragrance system and integration of air purification system In...

Global and China Solid State Battery Industry Report, 2023

Solid state battery research: semi-solid state battery has come out, is all-solid state battery still far away?In recent years, the new energy vehicle market has been booming, and the penetration of n...

Global and China Passenger Car T-Box Market Report, 2023

T-Box industry research: the market will be worth RMB10 billion and the integration trend is increasingly clear. ResearchInChina released "Global and China Passenger Car T-Box Market Report, 2023", w...

Analysis Report on Auto Shanghai 2023

Analysis on 75 Trends at Auto Shanghai 2023: Unprecedented Prosperity of Intelligent Cockpits and Intelligent Driving Ecology After analyzing the intelligent innovation trends at the Auto Shanghai 20...

Chinese Emerging Carmakers’ Telematics System and Entertainment Ecosystem Research Report, 2022-2023

Telematics service research (III): emerging carmakers work on UI design, interaction, and entertainment ecosystem to improve user cockpit experience. ResearchInChina released Chinese Emerging Carmake...

China Passenger Car Cockpit-Parking Industry Report, 2023

Cockpit-parking integration research: cockpit-parking vs. driving-parking, which one is the optimal solution for cockpit-driving integration?Cockpit-parking vs. driving-parking, which one is the optim...

Automotive Sensor Chip Industry Report, 2023

Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution. At the Auto Shanghai 2023, "more weight on percepti...

Automotive Electronics OEM/ODM/EMS Industry Report, 2023

Automotive electronics OEM/ODM/EMS research: amid the disruption in the division of labor mode in the supply chain, which auto parts will be covered by OEM/ODM/EMS mode?  Consumer electronic manu...

China Automotive Smart Glass Research Report, 2023

Smart glass research: the automotive smart dimming canopy market valued at RMB127 million in 2022 has a promising future.Smart dimming glass is a new type of special optoelectronic glass formed by com...

Automotive Ultrasonic Radar and OEM Parking Roadmap Development Research Report, 2023

Automotive Ultrasonic Radar Research: as a single vehicle is expected to carry 7 units in 2025, ultrasonic radars will evolve to the second generation.    As a single vehicle is expec...

Autonomous Driving SoC Research Report, 2023

Research on autonomous driving SoC: driving-parking integration boosts the industry, and computing in memory (CIM) and chiplet bring technological disruption.  “Autonomous Driving SoC Research ...

China ADAS Redundant System Strategy Research Report, 2023

Redundant System Research: The Last Line of Safety for Intelligent VehiclesRedundant design refers to a technology adding more than one set of functional channels, components or parts that enable the ...

Intelligent Steering Key Components Report, 2023

Research on intelligent steering key components: four development trends of intelligent steering The automotive chassis consists of four major systems: transmission system, steering system, driving ...

Automotive Digital Instrument Cluster Operating System Report, 2023

Digital Instrument Cluster Operating System Report: QNX commanded 71% of the Chinese intelligent vehicle cluster operating system market. Amid the trend for the integration of digital cluster and cen...

800V High Voltage Platform Research Report, 2023

How to realize the commercialization of 800V will play a crucial part in the strategy of OEMs. As new energy vehicles and battery technology boom, charging and battery swapping in the new energy vehi...

Automotive Intelligent Cockpit Platform Research Report, 2023

Intelligent cockpit platform research: the boundaries between vehicles and PCs are blurring, and there are several feasible paths for cockpit platforms. Automotive Intelligent Cockpit Platform Resea...

Global and China Automotive Wireless Communication Module Industry Report,2023

Vehicle communication module research: 5G R16+C-V2X module, smart SiP module and other new products spring up.   In 2022, 4G modules swept 84.3% of the vehicle communication module market....

Intelligent Vehicle Cockpit-Driving Integration Research Report, 2023

Cockpit-Driving Integration Research: many companies are making layout and may implement it during 2024-2025.  1. What is the real cockpit-driving integration? At present, automotive electroni...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号