End-to-end Autonomous Driving Industry Report, 2024-2025
  • Dec.2024
  • Hard Copy
  • USD $4,400
  • Pages:330
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: DTT005
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower

There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-stage) types. The former has a clear concept, and much lower R&D cost than the latter, because it does not require any manually annotated data sets but relies on multimodal foundation models developed by Google, META, Alibaba and OpenAI. Standing on the shoulders of these technology giants, the performance of global end-to-end autonomous driving is much better than segmented end-to-end autonomous driving, but at extremely high deployment cost.

Segmented end-to-end autonomous driving still uses the traditional CNN backbone network to extract features for perception, and adopts end-to-end path planning. Although its performance is not as good as global end-to-end autonomous driving, it has lower deployment cost. However, the deployment cost of segmented end-to-end autonomous driving is still very high compared with the current mainstream traditional “BEV+OCC+decision tree” solution. 

E2E 1.png

As a representative of global end-to-end autonomous driving, Waymo EMMA directly inputs videos without a backbone network but with a multimodal foundation model as the core. UniAD is a representative of segmented end-to-end autonomous driving.

E2E 2.png

Based on whether feedback can be obtained, end-to-end autonomous driving researches are mainly divided into two categories: the research is conducted in simulators such as CARLA, and the next planned instructions can be actually performed; the research based on collected real data, mainly imitation learning, referring to UniAD. End-to-end autonomous driving currently features an open loop, so it is impossible to truly see the effects of the execution of one's own predicted instructions. Without feedback, the evaluation of open-loop autonomous driving is very limited. The two indicators commonly used in documents include L2 distance and collision rate.
 
L2 distance: The L2 distance between the predicted trajectory and the true trajectory is calculated to judge the quality of the predicted trajectory.
Collision rate: The probability of collision between the predicted trajectory and other objects is calculated to evaluate the safety of the predicted trajectory.

The most attractive thing about end-to-end autonomous driving is the potential for performance improvement. The earliest end-to-end solution is UniAD. A paper at the end of 2022 revealed that the L2 distance was as long as 1.03 meters. It was greatly reduced to 0.55 meters at the end of 2023 and further to 0.22 meters in late 2024. Horizon Robotics is one of the most active companies in the end-to-end field, and its technology development also shows the overall evolution of the end-to-end route. After UniAD came out, Horizon Robotics immediately proposed VAD whose concept is similar to that of UniAD with much better performance. Then, Horizon Robotics turned to global end-to-end autonomous driving. Its first result was HE-Driver, which had a relatively large number of parameters. The following Senna has a smaller number of parameters and is also one of the best-performing end-to-end solutions.      

E2E 3.png

The core of some end-to-end systems is still BEVFormer which uses vehicle CAN bus information by default, including explicit information related to the vehicle's speed, acceleration and steering angle, exerting a significant impact on path planning. These end-to-end systems still require supervised training, so massive manual annotations are indispensable, which makes the data cost very high. Furthermore, since the concept of GPT is borrowed, why not use LLM directly? In this case, Li Auto proposed DriveVLM.

As the figure below shows, the pipeline of DriveVLM from Li Auto mainly involves design of the three major modules: scenario description, scenario analysis, and hierarchical planning.

E2E 4.png

The scenario description module of DriveVLM is composed of environment description and key object recognition. Environment description focuses on common driving environments such as weather and road conditions. Key object recognition is to find key objects that have a greater impact on current driving decision. Environment description includes the following four parts: weather, time, road type, and lane line.

Differing from the traditional autonomous driving perception module that detects all objects, DriveVLM focuses on recognizing key objects in the current driving scenario that are most likely to affect autonomous driving decision, because detecting all objects will consume enormous computing power. Thanks to the pre-training of the massive autonomous driving data accumulated by Li Auto and the open source foundation model, VLM can better detect key long-tail objects, such as road debris or unusual animals, than traditional 3D object detectors.  

For each key object, DriveVLM will output its semantic category (c) and the corresponding 2D object box (b) respectively. Pre-training comes from the field of NLP foundation models, because NLP uses very little annotated data and is very expensive. Pre-training first uses massive unannotated data for training to find language structure features, and then takes prompts as labels to solve specific downstream tasks by fine-tuning.

DriveVLM completely abandons the traditional algorithm BEVFormer as the core but adopts large multimodal models. Li Auto's DriveVLM leverages Alibaba's foundation model Qwen-VL with up to 9.7 billion parameters, 448*448 input resolution, and NVIDIA Orin for inference operations.  

How does Li Auto transform from a high-level intelligent driving follower into a leader?

At the beginning of 2023, Li Auto was still a laggard in the NOA arena. It began to devote itself to R&D of high-level autonomous driving in 2023, accomplished multiple NOA version upgrades in 2024, and launched all-scenario autonomous driving from parking space to parking space in late November 2024, thus becoming a leader in mass production of high-level intelligent driving (NOA).

Reviewing the development history of Li Auto's end-to-end intelligent driving, in addition to the data from its own hundreds of thousands of users, it also partnered with a number of partners on R&D of end-to-end models. DriveVLM is the result of the cooperation between Li Auto and Tsinghua University.  

In addition to DriveVLM, Li Auto also launched STR2 with Shanghai Qi Zhi Institute, Fudan University, etc., proposed DriveDreamer4D with GigaStudio, the Institute of Automation of Chinese Academy of Sciences, and unveiled MoE with Tsinghua University.

Mixture of Experts (MoE) Architecture 

In order to solve the problem of too many parameters and too much calculation in foundation models, Li Auto has cooperated with Tsinghua University to adopt MoE Architecture. Mixture of Experts (MoE) is an integrated learning method that combines multiple specialized sub-models (i.e. "experts") to form a complete model. Each "expert" makes contributions in the field in which it is good at. The mechanism that determines which "expert" participates in answering a specific question is called a "gated network". Each expert model can focus on solving a specific sub-problem, and the overall model can achieve better performance in complex tasks. MoE is suitable for processing considerable datasets and can effectively cope with the challenges of massive data and complex features. That’s because it can handle different sub-tasks in parallel, make full use of computing resources, and improve the training and reasoning efficiency of models. 

E2E 5.png

STR2 Path Planner

STR2 is a motion planning solution based on Vision Transformer (ViT) and MoE. It was developed by Li Auto and researchers from Shanghai Qi Zhi Research Institute, Fudan University and other universities and institutions.
STR2 is designed specifically for the autonomous driving field to improve generalization capabilities in complex and rare traffic conditions.
STR2 is an advanced motion planner that enables deep learning and effective planning of complex traffic environments by combining a Vision Transformer (ViT) encoder and MoE causal transformer architecture.
The core idea of STR2 is to wield MoE to handle modality collapse and reward balance through expert routing during training, thereby improving the model's generalization capabilities in unknown or rare situations. 

E2E 6.png

DriveDreamer4D World Model
In late October 2024, GigaStudio teamed up with the Institute of Automation of Chinese Academy of Sciences, Li Auto, Peking University, Technical University of Munich and other units to propose DriveDreamer4D.
20120114.gifDriveDreamer4D uses a world model as a data engine to synthesize new trajectory videos (e.g., lane change) based on real-world driving data.
20120114.gifDriveDreamer4D can also provide rich and diverse perspective data (lane change, acceleration and deceleration, etc.) for driving scenarios to increase closed-loop simulation capabilities in dynamic driving scenarios.
20120114.gifThe overall structure diagram is shown in the figure. The novel trajectory generation module (NTGM) adjusts the original trajectory actions, such as steering angle and speed, to generate new trajectories. These new trajectories provide a new perspective for extracting structured information (e.g., vehicle 3D boxes and background lane line details).
20120114.gifSubsequently, based on the video generation capabilities of the world model and the structured information obtained by updating the trajectories, videos of new trajectories can be synthesized. Finally, the original trajectory videos are combined with the new trajectory videos to optimize the 4DGS model.

E2E 7.png

1. Foundation of End-to-end Autonomous Driving Technology
1.1 Terminology and Concept of End-to-end Autonomous Driving
1.2 Introduction to and Status Quo of End-to-end Autonomous Driving
Background of End-to-end Autonomous Driving 
Reason for End-to-end Autonomous Driving: Business Value
Difference between End-to-end Architecture and Traditional Architecture (1)
Difference between End-to-end Architecture and Traditional Architecture (2)
End-to-end Architecture Evolution
Progress in End-to-end Intelligent Driving (1)
Progress in End-to-end Intelligent Driving (2)
Comparison between One-stage and Two-stage End-to-end Autonomous Driving
Mainstream One-stage/Segmented End-to-end System Performance Parameters
Significance of Introducing Multi-modal models to End-to-end Autonomous Driving
Problems and Solutions for End-to-end Mass Production (1)
Problems and Solutions for End-to-end Mass Production (2)
Progress and Challenges in End-to-end Systems 

1.3 Classic End-to-end Autonomous Driving Cases
SenseTime UniAD
Technical Principle and Architecture of SenseTime UniAD 
Technical Principle and Architecture of Horizon Robotics VAD  
Technical Principle and Architecture of Horizon Robotics VADv2  
VADv2 Training
Technical Principle and Architecture of DriveVLM  
Li Auto Adopts MoE 
MoE and STR2
E2E-AD Model: SGADS
E2E Active Learning Case: ActiveAD 
End-to-end Autonomous Driving System Based on Foundation Models 

1.4 Foundation Models  
1.4.1 Introduction 
Core of End-to-end System - Foundation Models 
Foundation Models (1) - Large Language Models: Examples of Applications in Autonomous Driving
Foundation Models (2) - Vision Foundation (1)
Foundation Models (2) - Vision Foundation (2)
Foundation Models (2) - Vision Foundation (3) 
Foundation Models (2) - Vision Foundation (4)
Foundation Models (3) - Multimodal Foundation Models (1)
Foundation Models (3) - Multimodal Foundation Models (2)
1.4.2 Foundation Models: Multimodal Foundation Models
Development of and Introduction to Multimodal Foundation Models
Multimodal Foundation Models VS Single-modal Foundation Models (1)
Multimodal Foundation Models VS Single-modal Foundation Models (2)
Technology Panorama of Multimodal Foundation Models 
Multimodal Information Representation
1.4.3 Foundation Models: Multimodal Large Language Models
Multimodal Large Language Models (MLLMs)
Architecture and Core Components of MLLMs
MLLMs - Mainstream Models
Application of MLLMs in Autonomous Driving

1.5 VLM & VLA  
Application of Vision-Language Models (VLMs)  
Development History of VLMs
Architecture of VLMs
Application Principle of VLMs in End-to-end Autonomous Driving
Application of VLMs in End-to-end Autonomous Driving
VLM→VLA
VLA Models
VLA Principle
Classification of VLA Models
Core Functions of End-to-end Multimodal Model for Autonomous Driving (EMMA)

1.6 World Models
Definition and Application
Basic Architecture
Generation of Virtual Training Data
Tesla’s World Model
Nvidia
InfinityDrive: Breaking Time Limits in Driving World Models

1.7 Comparison between E2E-AD Motion Planning Models
Comparison between Several Classical Models in Industry and Academia 
Tesla: Perception and Decision Full Stack Integrated Model
Momenta: End-to-end Planning Architecture Based on BEV Space
Horizon Robotics 2023: End-to-end Planning Architecture Based on BEV Space
DriveIRL: End-to-end Planning Architecture Based on BEV Space
GenAD: Generative End-to-end Model

1.8 Embodied Language Models (ELMs)
ELMs Accelerate the Implementation of End-to-end Solutions
Application Scenarios
Limitations and Positive Impacts

2 Technology Roadmap and Development Trends of End-to-end Autonomous Driving
2.1 Technology Trends of End-to-end Autonomous Driving 
Trend 1
Trend 2
Trend 3
Trend 4
Trend 5
Trend 6
Trend 7

2.2 Market Trends of End-to-end Autonomous Driving
Layout of Mainstream End-to-end System Solutions
Comparison of End-to-end System Solution Layout between Tier 1 Suppliers (1)
Comparison of End-to-end System Solution Layout between Tier 1 Suppliers (2) 
Comparison of End-to-end System Solution Layout between Other Autonomous Driving Companies 
Comparison of End-to-end System Solution Layout between OEMs (1)
Comparison of End-to-end System Solution Layout between OEMs (2)
Comparison of NOA and End-to-end Implementation Schedules between Sub-brands of Domestic Mainstream OEMs (1) 
Comparison of NOA and End-to-end Implementation Schedules between Sub-brands of Domestic Mainstream OEMs (2)
Comparison of NOA and End-to-end Implementation Schedules between Sub-brands of Domestic Mainstream OEMs (3)
Comparison of NOA and End-to-end Implementation Schedules between Sub-brands of Domestic Mainstream OEMs (4) 

2.3 End-to-end Autonomous Driving Team Building
Impacts of End-to-end Foundation Models on Organizational Structure (1)
Impacts of End-to-end Foundation Models on Organizational Structure (2)
End-to-end Autonomous Driving Team Building of Domestic OEMs (1)
End-to-end Autonomous Driving Team Building of Domestic OEMs (2)
End-to-end Autonomous Driving Team Building of Domestic OEMs (3)
End-to-end Autonomous Driving Team Building of Domestic OEMs (4)
End-to-end Autonomous Driving Team Building of Domestic OEMs (5)
End-to-end Autonomous Driving Team Building of Domestic OEMs (6)
End-to-end Autonomous Driving Team Building of Domestic OEMs (7)
Team Building of End-to-end Autonomous Driving Suppliers (1)
Team Building of End-to-end Autonomous Driving Suppliers (2)
Team Building of End-to-end Autonomous Driving Suppliers (3)
Team Building of End-to-end Autonomous Driving Suppliers (4)

3. End-to-end Autonomous Driving Suppliers
3.1 MOMENTA  
Profile
One-stage End-to-end Solutions (1)
One-stage End-to-end Solutions (2)
End-to-end Planning Architecture
One-stage End-to-end Mass Production Empowers the Large-scale Implementation of NOA in Mapless Cities
High-level Intelligent Driving and End-to-end Mass Production Customers

3.2 DeepRoute.ai
Product Layout and Strategic Deployment
End-to-end Layout  
Difference between End-to-end Solutions and Traditional Solutions
Implementation Progress in End-to-end Solutions 
End-to-end VLA Model Analysis
Designated End-to-end Mass Production Projects and VLA Model Features
Hierarchical Prompt Tokens
End-to-end Training Solutions
Application Value of DINOv2 in the Field of Computer Vision
Autonomous Driving VQA Task Evaluation Data Sets
Score Comparison between HoP and Huawei 

3.3 Huawei  
Development History of Huawei's Intelligent Automotive Solution Business Unit
End-to-end Concept and Perception Algorithm of ADS 
ADS 3.0 (1)
ADS 3.0 (2): End-to-end
ADS 3.0 (3): ASD 3.0 VS. ASD 2.0
End-to-end Solution Application Cases of ADS 3.0 (1)
End-to-end Solution Application Cases of ADS 3.0 (2)
End-to-end Solution Application Cases of ADS 3.0 (3)
End-to-end Autonomous Driving Solutions of Multimodal LLMs 
End-to-end Testing—VQA Tasks
Architecture of DriveGPT4
End-to-end Training Solution Examples
The Training of DriveGPT4 Is Divided Into Two Stages
Comparison between DriveGPT4 and GPT4V

3.4 Horizon Robotics  
Profile
Main Partners
End-to-end Super Drive and Its Advantages
Architecture and Technical Principle of Super Drive 
Journey 6 and Horizon SuperDrive? All-scenario Intelligent Driving Solution
Senna Intelligent Driving System (Foundation Model + End-to-end)
Core Technology and Training Method of Senna
Core Module of Senna

3.5 Zhuoyu Technology  
Profile 
R&D and Production
Two-stage End-to-end Parsing
One-stage Explainable End-to-end Parsing
End-to-end Mass Production Customers

3.6 NVIDIA  
Profile
Autonomous driving solution
DRIVE Thor  
Basic Platform for Autonomous Driving 
Next-generation Automotive Computing Platform
Latest End-to-end Autonomous Driving Framework: Hydra-MDP
 Self-developed Model Architecture

3.7 Bosch  
Intelligent Driving China Strategic Layout (1)
Based on the End-to-end Development Trend, Bosch Intelligent Driving initiates the Organizational Structure Reform
Intelligent Driving Algorithm Evolution Planning

 3.8 Baidu  
Profile of Apollo
Strategic Layout in the Field of Intelligent Driving
Two-stage End-to-end
Production Models Based on Two-stage End-to-end Technology Architecture  
Baidu Auto Cloud 3.0 Enables End-to-end Systems from Three Aspects

3.9 SenseAuto
Profile 
UniAD End-to-end Solution
DriveAGI: The Next-generation Autonomous Driving Foundation Model and Its Advantages
DiFSD: SenseAuto’s End-to-end Autonomous Driving System That Simulates Human Driving Behavior 
DiFSD: Technical Interpretation

3.10 QCraft
Profile 
"Driven-by-QCraft" High-level Intelligent Driving Solution
End-to-end Layout
Advantages of End-to-end Layout

3.11 Wayve
Profile
Advantages of AV 2.0
GAIA-1 World Model - Architecture
GAIA-1 World Model - Token 
GAIA-1 World Model - Generation Effect  
 LINGO-2  

3.12 Waymo 
End-to-end Multimodal Model for Autonomous Driving (EMMA)
EMMA Analysis: Multimodal Input
EMMA Analysis: Defining Driving Tasks as Visual Q&A
EMMA Analysis: Introducing Thinking Chain Reasoning to Enhance Interpretability
Limitations of EMMA

3.13 GigaStudio
Introduction
DriveDreamer
DriveDreamer 2
DriveDreamer4D 
3.14 LightWheel AI
Profile
Core Technology
Core Technology Stack
Data Annotation and Synthetic Data

4. End-to-end Autonomous Driving Layout of OEMs
4.1 Xpeng's End-to-end Intelligent Driving Layout
End-to-end System (1): Architecture
End-to-end System (2): Intelligent Driving Model
End-to-end System (3): AI+XNGP
End-to-End System (4): Organizational Transformation
Data Collection, Annotation and Training

4.2 Li Auto’s End-to-end Intelligent Driving Layout
End-to-end Solutions (1)
End-to-end Solutions (2)
End-to-end Solutions (3)
End-to-end Solutions (4)
End-to-end Solutions (5)
End-to-end Solutions (6)
End-to-end Solutions: L3 Autonomous Driving
End-to-end Solutions: Building of a Complete Foundation Model
Technical Layout: Data Closed Loop

4.3 Tesla’s End-to-end Intelligent Driving Layout
Interpretation of the 2024 AI Conference
Development History of AD Algorithms 
End-to-end Process 2023-2024 
Development History of AD Algorithms (1)
Development History of AD Algorithms (2)
Development History of AD Algorithms (3)
Development History of AD Algorithms (4)
Development History of AD Algorithms (5)
Tesla: Core Elements of the Full-stack Perception and Decision Integrated Model  
"End-to-end" Algorithms
World Models
Data Engines
Dojo Supercomputing Center

4.4 Zeron’s End-to-end Intelligent Driving Layout
Profile
End-to-end Autonomous Driving System Based on Foundation Models (1)
End-to-end Autonomous Driving System Based on Foundation Models (2) - Data Training
Advantages of End-to-end Driving System 

4.5 Geely & ZEEKR’s End-to-end Intelligent Driving Layout
Geely’s ADAS Technology Layout: Geely Xingrui Intelligent Computing Center (1)
Geely’s ADAS Technology Layout: Geely Xingrui Intelligent Computing Center (2)
Geely’s ADAS Technology Layout: Geely Xingrui Intelligent Computing Center (3)
Xingrui AI foundation model
Application of Geely’s Intelligent Driving Foundation Model Technology
ZEEKR’s End-to-end System: Two-stage Solution
ZEEKR Officially Released End-to-end Plus
ZEEKR’s End-to-end Plus
Examples of Models with ZEEKR’s End-to-end System

4.6 Xiaomi Auto’s End-to-end Intelligent Driving Layout
Profile 
End-to-end Technology Enables All-scenario Intelligent Driving from Parking Spaces to Parking Spaces
Road Foundation Models Build HD Maps through Road Topology
New-generation HAD Accesses End-to-end System
End-to-end Technology Route

4.7 NIO’s End-to-end Intelligent Driving Layout
Intelligent Driving R&D Team Reorganization with an Organizational Structure Oriented Towards End-to-end System 
From Modeling to End-to-end, World Models Are the Next 
World Model End-to-end System
Intelligent Driving Architecture: NADArch 2.0
End-to-end R&D Tool Chain
Imagination, Reconstruction and Group Intelligence of World Models 
NSim
Software and Hardware Synergy Capabilities Continue to Strengthen, Moving towards the End-to-end System Era 

4.8 Changan Automobile’s End-to-end Intelligent Driving Layout
Brand Layout
End-to-end System (1)
End-to-end System (2)
Production Models with End-to-end System  

4.9 Mercedes-Benz's End-to-end Intelligent Driving Layout
Brand New "Vision-only Solutions without Maps, L2++ All-scenario High-level Intelligent Driving Functions" 
Brand New Self-developed MB.OS 
Cooperation with Momenta

4.10 Chery’s End-to-end Intelligent Driving Layout
Profile of ZDRIVE.AI
Chery’s End-to-end System Development Planning
 

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号