China ADAS Redundant System Strategy Research Report, 2024
  • Dec.2024
  • Hard Copy
  • USD $4,400
  • Pages:330
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: CL001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

Redundant system strategy research: develop towards integrated redundant design
ADAS redundant system definition framework

For autonomous vehicles, safety is the primary premise. Only when ADAS is fully redundant can real safety be ensured. Currently, the redundant design of most OEMs, Tier 1 suppliers and L4 autonomous driving companies is mainly software and hardware backup:
Software: algorithm redundancy, for example, GAC Group’s latest ADiGO PILOT intelligent driving system adopts the AEB function algorithm, the vision + radar fusion algorithm and the vision algorithm real-time redundant verification strategy to maximize the reliability of AEB.
Hardware: reflected in different functional positions. The perception end, decision end, execution end, power supply end, etc. all adopt dual-redundant or multi-redundant design to ensure that when one of the systems fails, another system with the same function can work normally.

冗余 1.png

Execution redundancy: Fully redundant design of braking and steering systems

Execution redundancy and decision redundancy are the core parts, directly determining whether the vehicle can make correct response at a critical moment. Execution redundancy is often placed in braking and steering systems, and is generally designed as two independent systems with same functions. Decision redundancy is on the brain side. In vehicle EEA, the central computing platform is equipped with two sets of core computing units, and the redundant architecture design concept is adopted at vehicle architecture level, function definition level, system level, etc.

From the perspective of braking redundancy, its characteristics and trends are as follows:

At present, the key product is electro-hydraulic brake system (EHB), and the common redundancy schemes are the mechanical redundancy + electronic redundancy dual  fail-safe mode, and adding auxiliary brake modules;

Brake-by-wire system is the future trend, because the electromechanical brake system (EMB) completely abandons brake fluid, hydraulic pipelines and other components of traditional braking systems, and generates braking force by electric motor drive, which improves the response speed, simplifies the structural layout, and enables inherent redundancy capabilities. However, it has extremely high reliability requirements and is difficult to mass-produce and install on vehicles in the short term. 

In terms of steering redundancy, its characteristics and trends are as follows:

Currently the electric power steering system (EPS) mainly adopts the dual EPS steering redundancy scheme with two motors, two power supplies and two windings, which is equivalent to two sets of completely independent EPS hardware, which are independent of and backed up by each other, and the overall cost is relatively high;
The steering system is developing from electric power mode to wired-control mode. Steer-by-wire (SBW) system is composed of three main parts, i.e., steering wheel assembly, steering actuator assembly and ECU, as well as auxiliary systems such as automatic fail-safe system and power supply. It offers benefits of quick response, flexible installation method, light weight and high collision safety. SBW system therefore needs to have redundant backup of core components.

Redundant design of steer-by-wire system of NIO NT 3.0 Platform

The steer-by-wire system is used for transmission and control of electrical signals between the steering wheel and wheels. The angle and resistance torque of the steering wheel can be freely designed, with lower delay, more precise control, higher transmission efficiency and more flexible layout.
Fully redundant design with dual power supply, dual communication, dual hardware and dual software. Although there are no mechanical steering columns to connect the steering wheel and wheels, its reliability is 2.2 times higher than common electric power steering systems.
In December 2024, NIO ET9, the first model based on NT 3.0 Platform, acquired the mass production license for steer-by-wire technology from the Ministry of Industry and Information Technology, becoming China's first model carrying steer-by-wire technology. 

冗余 2.png

Integrated redundant design for central computing architecture

With the in-depth application of intelligent connection and autonomous driving technologies, vehicle braking and steering systems are heading in the direction of integration. The central EEA and integrated chassis launched by some OEMs and suppliers combine the braking system, steering system, drive system, etc., and adopt an integrated and fully redundant design concept.

CATL Integrated Intelligent Chassis (CIIC) of CATL (Shanghai) Intelligent Technology Co., Ltd.

CIIC (CATL Integrated Intelligent Chassis) launched by CATL (Shanghai) Intelligent Technology Co., Ltd. is a highly intelligent skateboard chassis, with core features of "upper and lower decoupling, high integration, and openness". 
CIIC highly integrates vehicle drive system, brake system, steering system, suspension system, etc. into the physical underbody, and the platform design enables scalable software and hardware;
CIIC-M (middle platform) adopts fully wired-control technology, eliminating the mechanical connection between the brake pedal and ECU, and completely decoupling the upper and lower bodies; meanwhile, it adds software redundancy strategy, safety monitoring, and fault handling mechanism to ensure system safety and robustness.

冗余 3.png

BYD e4 Platform

BYD's e4 Platform cancels the steering column and brake caliper, and uses the driving-braking-steering three-in-one technology to achieve steering and braking, thereby realizing vehicle-level safety redundancy capabilities.
Equipped with four 220-240kW large motors, it achieves the maximum braking deceleration of 1g and braking through precise motor torque and speed control, coupled with power blade batteries, new silicon carbide motor controller and advanced thermal management technology;
Differential steering technology is used to steer the vehicle. The left and right wheels receive different torques to deflect and thus complete the steering. The minimum turning diameter is 12 meters, and in the 18m pylon course slalom test, the maximum speed is 60km/h.

The e4 Platform features a distributed drive form with four independently driven motors, and it enables basic driving capabilities even if only one motor is working. In addition, the e4 Platform's innovative technology can provide braking and steering dual redundant backup based on existing braking and steering.  

冗余 4.png

Control redundancy: Multi-ECU redundancy is still the mainstream solution, and will develop towards single-chip redundancy in the future

The control system must meet fail-operational requirements to achieve L3 and above autonomous driving functions, that is, after a sensor fails, the vehicle can still perform corresponding functions and complete driving safely. To this end, controlling system will use two or three ECUs, and implant some redundant safety measures on some sensors, or achieve control redundancy by adding chips in the domain controller.

Multi-ECU Redundancy Solution - Dual Computing Platforms of BYD Xuanji Intelligent Architecture

As the main computing platform, Tianxuan cross-domain computing platform integrates the power domain, body domain and chassis domain, and adopts a multi-PCB design scheme for cooperative control of power domain, body domain and chassis domain;
A backup computing platform Tianji is added as backup redundancy. It is connected to the front and rear control domains via dual Gigabit Ethernet for case of need. 

冗余 5.png

Single-chip redundant layout - based on Renesas multi-domain fusion SoC R-Car X5

R-Car X5, Renesas Electronics' the latest generation of automotive multi-domain fusion SoC (using ARM Cortex-A720AE core, meeting ASIL-B to ASIL-D functional safety requirements; 32-core design, CPU computing power up to 1000kDMIPS), supports the safety isolation of multiple domains with different functional safety level requirements, and adopts hardware-based "Freedom From Interference (FFI)" technology. This hardware design achieves the isolation of critical safety functions (such as brake-by-wire) from non-critical functions, and critical functions that are considered to be related to safety can be assigned to their own independent and redundant domain. Each domain has its own independent CPU core, memory, and interface, thereby preventing potential catastrophic failures in the vehicle when hardware or software in different domains fails.

冗余 6.png

1 Overview of ADAS Redundant System
1.1 Definition of ADAS Redundant System
Definition and Source of ADAS Redundant System
ADAS Redundant System Structure (1)
ADAS Redundant System Structure (2)
Classification and Types of ADAS Redundant System (1)
Classification and Types of ADAS Redundant System (2)
1.2 Common Structures of ADAS Redundant System Design
Common ADAS Redundant Architecture Types
Common ADAS Redundant Architecture - MooN Voting Structure (1)
Common ADAS Redundant Architecture - MooN Voting Structure (2)
Redundant Mode Design of L3 Autonomous Driving System Architecture
L3 Autonomous Driving System Architecture Redundant Design Solution - Main and Auxiliary Dual-System Fully Autonomous Driving System Architecture
L4 Autonomous Driving System Architecture Redundancy Design

2 Development Trends of ADAS Redundant Systems by Category
2.1 Perception Redundancy
Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy
Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Pre-fusion and Post-fusion Algorithms of Multi-sensor Information
Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Fusion Level Type of Multi-sensor Information
Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Multi-sensor Fusion Architecture (1)
Perception Redundancy Scheme 1: Multi-sensor Heterogeneous Redundancy - Multi-sensor Fusion Architecture (2)
Perception Redundancy Scheme 2: V2X As A New Redundant Module (1)
Perception Redundancy Scheme 2: V2X As A New Redundant Module (2)
Perception Redundancy Scheme three: IMU Triple Heterogeneous Redundancy
Perception and Positioning Redundancy Case (2): Bosch’s Perception Module Redundancy Design
Perception and Positioning Redundancy Case (2): Mobileye’s True Redundancy (1)
Perception and Positioning Redundancy Case (2): Mobileye's True Redundancy (2)
Perception and Positioning Redundancy Case (2): Mobileye’s True Redundancy Autonomous Driving Solution
Perception and Positioning Redundancy Case (3): Bosch’s IMU Positioning Module Redundancy Design
Perception and Positioning Redundancy Case (4): ACEINNA Triple Redundant IMU
2.2 Decision (Control) Redundancy
Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (1)
Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (2)
Control Redundancy Scheme 1: Domain Control Multi-ECU Mutual Redundancy (3)
Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Renesas R-Car X5
Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Qualcomm 8775
Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - NVIDIA DRIVE Thor
Control Redundancy Scheme 2: Single-chip Cross-domain SoC Redundancy Strategy - Black Sesame Technologies C1296
Control Redundancy Scheme 3: L3 Autonomous Driving Redundant Computing Platform Design (1)
Control Redundancy Scheme 3: L3 Autonomous Driving Redundant Computing Platform Design (2)
Domain Control Multi-ECU Redundancy Case (1)
Domain Control Multi-ECU Redundancy Case (2)
Domain Control Multi-ECU Redundancy Case (3)
2.3 Execution (Braking) Redundancy
Braking System Technology Route 1: EHB (Electro-Hydraulic Brake)
Braking System Technology Route 1: Auxiliary Components of EHB (Electro-Hydraulic Brake) 
EHB Redundancy Scheme 1: Two-Box Redundant Braking Solution (1)
EHB Redundancy Scheme 1: Two-Box Redundant Braking Solution (2)
EHB Redundancy Scheme 1: One-Box Redundant Braking Solution (1)
EHB Redundancy Scheme 1: One-Box Redundant Braking Solution (2)
EHB Redundancy Case (1): Huawei’s Braking Redundancy Control System Patent
EHB Redundancy Case (2): Jingwei HiRain’s Braking Redundancy EWBS+ESP+EPB
EHB Redundancy Case (3): NASN Automotive’s Nbooster + ESC Redundant System (1)
EHB Redundancy Case (3): NASN Automotive’s Nbooster + ESC Redundant System (2)
EHB Redundancy Case (4): Bethel’s Power Supply Redundancy and Speed Processing Redundant System
EHB Redundancy Case (4): Bethel’s Electromechanical Redundancy and Hydraulic Redundancy Schemes
EHB Redundancy Case (5): Global Technology’s GIBS+ESC Redundancy Design (1)
EHB Redundancy Case (5): Global Technology’s GIBS+ESC Redundancy Design (2)
EHB Redundancy Case (5): Global Technology’s Demand for RBUs in Redundant Braking Solution
EHB Redundancy Case (5): Comparison between Global Technology’s One-box and Two-box
EHB Redundancy Case (5): Global Technology’s Braking System Development Plan
EHB Redundancy Case (6): LEEKR Technology’s One-box Braking System
EHB Redundancy Case (7): Yunke Technology’s Braking Redundancy and Control Redundancy Design
EHB Redundancy Case (8): Bosch’s Execution Module Redundancy Design (1)
EHB Redundancy Case (8): Bosch’s Execution Module Redundancy Design (2)
EHB Redundancy Case (8): Bosch’s Execution Module Redundancy Design (3)
EHB Redundancy Case (9): Continental’s MK Cx HAD Redundant Brake-by-Wire System (1)
EHB Redundancy Case (9): Continental’s MK Cx HAD Redundant Brake-by-Wire System (2)
EHB Redundancy Case (9): Comparison between Continental KC1 and MKC2
EHB Redundancy Case (10): Tongyu Automotive’s EHB Redundancy Design
EHB Redundancy Case (11): Bethel’s Dual-Control EPB System and WCBS+ Dual-Control EPB Redundant System
EHB Redundancy Case (12): Global Technology’s Braking Redundant System EPB
EHB Redundancy Case (13): CAIC’s IBCU+RCU+Dual-control EPB System Design (1)
EHB Redundancy Case (13): CAIC’s IBCU+RCU+Dual-control EPB System Design (2)
EHB Redundancy Case (13): CAIC’s IBCU+RCU+Dual-control EPB System Design (3)
EHB Redundancy Case (14): UAES’s Vehicle Motion Domain Controller VCU8.5 Redundancy Design (1)
EHB Redundancy Case (14): UAES’s Vehicle Motion Domain Controller VCU8.5 Redundancy Design (2)
Braking System Technology Route 2: EMB (Electro-Mechanical Brake)
Braking System Technology Route 2: EMB (Electro-Mechanical Brake)
Braking System Technology Route 2: Some Companies Are Developing EMB Products
EMB Redundancy Case (2): Tongyu Automotive’s EMB Redundancy Design
EMB Redundancy Case (2): Global Technology’s EMB Redundancy Scheme (1)
EMB Redundancy Case (2): Global Technology's EMB Redundancy Scheme (2)
EMB Redundancy Case (2): Global Technology's EMB Redundancy Scheme (3)
EMB Redundancy Case (3): LEEKR Technology’s EMB System
EMB Redundancy Case (4): Global Technology's e-Pedal 2.0 Redundancy Design
EMB Redundancy Case (5): CATL Intelligent’s CIIC Redundancy Design
2.4 Execution (Steering) Redundancy
Steering System Technology Evolution Route: Electric Power Steering to Steer-By-Wire Development (1)
Steering System Technology Evolution Route: Electric Power Steering to Steer-By-Wire Development (2)
EPS Redundancy Scheme 1: Mechanical System + TAS + Redundant EPS System
EPS Redundancy Scheme 2: Two Independent EPS Redundancy Systems
Redundant EPS Key Technologies (1): Redundancy Strategy and Safety Mechanism
Redundant EPS Key Technologies (2): Advanced Assist Algorithm Architecture
Redundant EPS Key Technologies (3): External Request Control Function
EPS Redundancy Case (1): Jingwei HiRain’s Steering Redundant R-EPS
EPS Redundancy Case (2): Global Technology’s Steering Redundant System
EPS Redundancy Case (2): Global Technology’s Steering System Development Plan
EPS Redundancy Case (3): DECO Automotive’s Fully Redundant Intelligent Steering Solution (1)
EPS Redundancy Case (3): DECO Automotive’s Fully Redundant Intelligent Steering Solution (2)
EPS Redundancy Case (4): Yunke Technology’s Steering Redundancy Design
EPS Redundancy Case (5): Handing Intelligent Technology’s Steering Redundant Products (1)
EPS Redundancy Case (5): Handing Intelligent Technology’s Steering Redundant Products (2)
EPS Redundancy Case (6): Bosch’s Execution Module Redundancy Design (1)
EPS Redundancy Case (6): Bosch’s Execution Module Redundancy Design (2)
EPS Redundancy Case (7): NASN Automotive’s Steering System Redundancy Design
SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (1)
SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (2)
SBW Redundancy Scheme 1: Dual Redundant System Integrated Design (3)
Key Redundant SBW Technologies
SBW Redundancy Case (1): High-Safety Steer-by-Wire System of HYCET EPS System
SBW Redundancy Case (1): Triple Redundancy Design for High-Safety Steer-by-Wire System of HYCET EPS System
SBW Redundancy Case (2): SBW System Redundancy Design of Handing Intelligent Technology (1)
SBW Redundancy Case (2): SBW System Redundancy Design of Handing Intelligent Technology (2)
2.5 Execution (Drive) Redundancy
Drive Redundancy Scheme: Two Drive Units Are Mutually Redundant
Drive Redundancy Case (1): Huawei's DriveONE Redundancy Design
Drive Redundancy Case (2): Fully Redundant Electronic Control Solution Based on Dual Three-Phase Brushless DC Motors
Drive Redundancy Case (3): BYD e4 Platform Four-Motor Independent Drive Mode
2.6 Power Redundancy
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System (1)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System (2)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (1)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (2)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Primary Power Supply Solution (3)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Rear Redundant Power Supply (1)
Power Redundancy Scheme 1: 12V Dual Redundant Power Supply System, Rear Redundant Power Supply (2)
Power Redundancy Scheme 1: Redundancy Design of High Voltage + DCDC + 12V Low Voltage Battery Dual-Channel Power Supply Network (1)
Power Redundancy Scheme 1: Redundancy Design of High Voltage + DCDC + 12V Low Voltage Battery Dual-Channel Power Supply Network (2)
Power Redundancy Scheme 2: 48V+12V Redundant Power Supply Network
Power Redundancy Scheme 2: 48V Can Be Used as the Third Voltage Rail
Power Redundancy Scheme 2: L3 Autonomous Driving Power Supply Redundancy Scheme (1)
Power Redundancy Scheme 2: L3 Autonomous Driving Power Supply Redundancy Scheme (2)
Power supply Redundancy Scheme (1): UAES Zone Controller Power Supply Center Redundancy Design (1)
Power supply Redundancy Scheme (1): UAES Zone Controller Power Supply Center Redundancy Design (2)
Power supply Redundancy Scheme (2): Aptiv Power Supply Redundancy (1)
Power supply Redundancy Scheme (2): Aptiv Power Supply Redundancy (2)
Power supply Redundancy Scheme (3): G-Pulse Electronics’ Dual-channel Redundant Power Supply System Design
2.7 Communication Redundancy
Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (1)
Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (2)
Communication Redundancy Scheme 1: Setting Up Multiple Redundant Channels between Domains (3)
Communication Redundancy Scheme 2: Building Ring Ethernet architecture between domains
Communication Redundancy Scheme 3: Tesla Daisy Chain Communication Loop
Communication Redundancy Case (1)
Communication Redundancy Case (2)
Communication Redundancy Case (3)
Communication Redundancy Case (4)
Communication Redundancy Case (5)
Communication Redundancy Case (6)
Communication Redundancy Case (7)
Communication Redundancy Case (8)
2.8 Comparison of Redundant Systems between Chinese and Foreign Suppliers
Summary of Redundant Systems of Chinese and Foreign Suppliers (1)
Summary of Redundant Systems of Chinese and Foreign Suppliers (2)
Summary of Redundant Systems of Chinese and Foreign Suppliers (3)
Bosch's Overall Redundant Design for Autonomous Driving Systems
CATL Intelligent’s CIIC Redundant Architecture Design Solution

3 ADAS Redundant System Strategies of OEMs
3.1 Great Wall Motor
Six Safety Redundant Systems of Coffee Intelligence 
Six Safety Redundant Systems of Coffee Intelligence: Perception redundancy - Multi-Source Heterogeneous Sensor Solution
Six Safety Redundant Systems of Coffee Intelligence: controller redundancy and architecture redundancy
Six Safety Redundant Systems of Coffee Intelligence: Power Redundancy and Brake Redundancy
Six Safety Redundant Systems of Coffee Intelligence: Steering Redundancy - Fully Redundant Steering System
Redundant System of Mecha Dragon

3.2 Changan Automobile
ADAS Redundant System Design Solution
EPA1 E/E Architecture Decision Redundancy Design: Multi-Chip Redundancy
EPA1 E/E Architecture Execution Redundancy Design: Dual Redundant Braking System
SDA E/E Architecture Perception Redundancy Design: Fusion Perception System
SDA E/E Architecture Communication Redundancy Design: ETH, CANFD Dual Redundant Channels
SDA E/E Architecture Software and Hardware Redundancy Design

3.3 GAC Group
ADAS Redundant System Design Solution
Eight Redundant Systems of ADiGO PILOT 
Perception Redundancy of ADiGO PILOT: Multi-source Heterogeneous Sensor Solution
Perception Redundancy of ADiGO PILOT: Urban NDA Multi-sensor Fusion Perception Solution
Architecture Redundancy and Algorithm Redundancy of ADiGO PILOT 
Power Redundancy of ADiGO PILOT: Dual Power Supply Network

3.4 Dongfeng Motor
ADAS Redundant System Design Solution
Redundancy Design of Integrated Chassis System
Brake-by-wire Redundant Structure
Redundancy Design of Brake-by-wire Components (1)
Redundancy Design of Brake-by-wire Components (2)
Brake-by-wire Software and Hardware Redundancy Design (1)
Brake-by-wire Software and Hardware Redundancy Design (2)

3.5 BYD
ADAS Redundant System Design Solution
"Xuanji" E/E Architecture Decision Redundancy Design (1)
"Xuanji" E/E Architecture Perception Redundancy Design (2)
"Xuanji" E/E Architecture Communication Redundancy Design (3)
e3.0 Evo Platform Power Control System Redundancy Design
e4 Platform Drive Architecture Redundancy Design (1)
e4 Platform Drive Architecture Redundancy Design (2)

3.6 FAW Group
ADAS Redundant System Design Solution
FEEA3.0 E/E Architecture Redundancy Design (1)
FEEA3.0 E/E Architecture Redundancy Design (2)
FEEA3.0 E/E Architecture Redundancy Design (3)
FEEA3.0 E/E Architecture Power Supply Redundancy Design: Dual-channel Power Supply Network

3.7 NIO
Comparison of Redundancy Strategies between NT3.0 Platform and NT2.0 Platform
Seven-layer Safety Redundancy Design of NT3.0 Platform
NT2.0 Platform Perception Redundancy Design: Aquila System + IMU + V2X Multi-solution Verification Perception
Perception Redundancy Scheme: Aquila System
Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (1)
Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (2)
Decision Redundancy Design: ADAM Adopts Multi-ECU Redundancy Scheme (3)
Execution Redundancy Scheme: Redundancy Design of Intelligent Chassis Controller (ICC)
Power Supply Redundancy Design: Dual Power Layout (1)
Power Supply Redundancy Design: Dual Power Layout (2)
Seven-layer Safety Redundancy Design of ET9 

3.8 Xpeng Motors
ADAS Redundant System Design Solution
Redundancy Design of XPILOT (1)
Redundancy Design of XPILOT (2)
Redundancy Design of X-EEA 3.0
Redundancy Design of X-EEA 3.5 (1)
Redundancy Design of X-EEA 3.5 (2)
Redundancy Design of X-EEA 3.5 (3)
Redundancy Design of Canghai Base
Hardware Redundant System Design (1)
Hardware Redundant System Design (2)

3.9 IM Motors
ADAS Redundant System Design Solution
Decision Redundancy: Central Brain ZXD2 (Cockpit-driving Integration) Horizon J6 + Qualcomm, Multi-ECU Redundancy Scheme (1)
Decision Redundancy: Central Brain ZXD2 (Cockpit-driving Integration) Horizon J6 + Qualcomm, Multi-ECU Redundancy Scheme (2)
Redundancy Design of Global Motion Control Platform VMC
Redundancy design of IM AD System

3.10 Leapmotor
ADAS Redundant System Design Solution
Redundancy Design of [Four-Leaf Clover] Integrated Architecture (1)
Redundancy Design of [Four-Leaf Clover] Integrated Architecture (2)

3.11 Neta Auto
ADAS Redundant System Design Solution
"Shanhai 2.0" E/E Architecture Design (1)
"Shanhai 2.0" E/E Architecture Design (2)
Redundancy Design of Hozon Central Supercomputing Platform
GT Dual-redundant Intelligent Steering System Design

3.12 Jidu Auto
ADAS Redundant System Design Solution
Functional Safety Design: Algorithm Redundancy and Perception Redundancy
Functional Safety Design: Perception Redundancy and Architecture Redundancy
Functional Safety Design: Controller Redundancy

3.13 ARCFOX
ADAS Redundant System Design Solution
IMC Platform Architecture Design 

3.14 BMW
ADAS Redundant System Design
Personal Pilot L3 Redundancy Design: Perception Redundancy, Chip Redundancy
Personal Pilot L3 Redundancy Design: Architecture Redundancy, System Redundancy
Fail-operational Driving System Redundancy Design

3.15 Volvo Cars
ADAS Redundant System Design
Safety Redundant Vehicle Control System (1)
Safety Redundant Vehicle Control System (2)
Safety Redundant Vehicle Control System (3)
SPA2 Architecture: 3* VCU + VIU
SPA 2 Multi-domain Hybrid Architecture: System Topology
Redundant Safety Technology of Autonomous Truck
 
3.16 Tesla
ADAS Redundant System Design
HW1.0-HW4.0 Autonomous Driving Perception Solution Iteration Process
Perception Redundancy
HW3.0 Chip Redundancy
HW4.0 Chip Redundancy
Braking Redundancy
Steering Redundancy
Computer Redundancy and Battery Redundancy Patents
VCFront Power Supply Redundancy and Isolation Design
Cybertruck's Steer-by-wire System Redundancy Design

3.17 Mercedes-Benz
ADAS Redundant System Design
DRIVE PILOT System Redundancy Design (1)
DRIVE PILOT System Redundancy Design (2)
STAR3 Domain Dual 12V Power Supply Architecture Design

3.18 Comparison of Redundant Systems in OEMs
Summary of OEMs’ Perception Redundant System (1)
Summary of OEMs’ Perception Redundant System (2)
Summary of OEMs’ Perception Redundant System (3)
Summary of OEMs’ Control Redundant System (1)
Summary of OEMs’ Control Redundant System (2)
Summary of OEMs’ Steering redundant systems
Summary of OEMs’ Braking Redundant Systems
Summary of OEMs’ Power Supply Redundant Systems
Summary of OEMs’ Communication Redundant System (1)
Summary of OEMs’ Communication Redundant System (2)

4 ADAS Redundant System Strategies of L4 Autonomous Driving Companies
Summary of Redundant Systems of L4 Autonomous Driving Companies (1)
Summary of Redundant Systems of L4 Autonomous Driving Companies (2)
4.1 Baidu Apollo
ADAS Redundant System Design Solution
Autonomous Vehicle Redundancy Design (1)
Autonomous Vehicle Redundancy Design (2)
Galaxy Architecture Platform

4.2 WeRide
ADAS Redundant System Design Solution
WeRide One
WeRide One Redundant System Design (1)
WeRide One Redundant System Design (2)
WeRide One Redundant System Design (3)

4.3 DeepRoute.ai
ADAS Redundant System Design Solution
Perception Redundancy Design (1)
Perception Redundancy Design (2)
Perception Redundancy Design (3)
chip Redundancy Design

4.4 Pegasus Technology
ADAS Redundant System Design Solution
High Redundant System Design
Redundancy Design of Robot Computing Platform

4.5 Pony.ai
ADAS Redundant System Design Solution
Positioning Redundancy: Multi-sensor Fusion Positioning System
Redundancy Design of Sixth-generation Autonomous Driving Software and Hardware System (1)
Redundancy Design of Sixth-generation Autonomous Driving Software and Hardware System (2)
Planning of Seventh-Generation Autonomous Driving Software and Hardware System 
Redundancy Design of Software and Hardware Integrated System for Third-generation Autonomous Driving Truck

4.6 UISEE
ADAS Redundant System Design Solution
Autonomous Driving Technology Safety System (1)
Autonomous Driving Technology Safety System (2)
Redundancy Design of U-Drive? Intelligent Driving Platform
Redundant Architecture Design of U-Drive? Intelligent Driving Platform
U-Drive? Intelligent Driving Platform Redundant System Switching Algorithm
U-Drive? Intelligent Driving Platform Perception Redundancy Technology (1)
U-Drive? Intelligent Driving Platform Perception Redundancy Technology (2)
U-Drive? Intelligent Driving Platform Perception Redundancy Technology (3)

4.7 QCraft.ai
ADAS Redundant System Design Solution
"Driven-by-QCraft" Autonomous Driving Redundancy Design (1)
"Driven-by-QCraft" Autonomous Driving Redundancy Design (2)
Redundancy Design of Autonomous Driving Sensor Kit

4.8 Momenta
ADAS Redundant System Design Solution
Mpilot/MSD Autonomous Driving Solution Redundancy Design (1)
Mpilot/MSD Autonomous Driving Solution Redundancy Design (2)
Momenta Provides Perception Redundancy Scheme for GWM Mecha Dragon's Intelligent Driving System
Momenta 5.0 Advanced Intelligent Driving System Redundancy Design

4.9 AutoX
Redundancy Design of Fifth-generation Autonomous Driving System for AutoX Gen5
Full Stack Redundancy Design (1)
Full Stack Redundancy Design (2)

4.10 Didi Autonomous Driving
Gemini Platform Multi-layer Security Redundancy Design (1)
Gemini Platform Multi-layer Security Redundancy Design (2)
Redundancy Design of Next-generation Robotaxi Model

4.11 IDRIVERPLUS
Redundancy Design of H-INP ADAS system
Redundancy Design of Driving-parking Integration

4.12 Waymo
ADAS Redundant System Design
Autonomous Driving System Redundancy Design (1)
Autonomous Driving System Redundancy Design (2)
Autonomous Driving System Redundancy Design (3)
Autonomous Driving System Redundancy Design (4)
Truck Redundancy Design (1)
Truck Redundancy Design (2)
 

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号