Autonomous Driving SoC Research Report, 2023
  • Apr.2023
  • Hard Copy
  • USD $5,000
  • Pages:420
  • Single User License
    (PDF Unprintable)       
  • USD $4,800
  • Code: YS036
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $7,200
  • Hard Copy + Single User License
  • USD $5,200
      

Research on autonomous driving SoC: driving-parking integration boosts the industry, and computing in memory (CIM) and chiplet bring technological disruption. 

“Autonomous Driving SoC Research Report, 2023” released by ResearchInChina highlights mainstream automakers’ autonomous driving SoC and system deployment strategies, and 9 overseas and 10 Chinese autonomous driving SoC vendors, and discusses the following key issues:

20120114.gifAnalysis and outlook for autonomous driving SoC and system deployment strategies of OEMs;
20120114.gifApplication and configuration strategy of autonomous driving SoC in driving-parking integration;
20120114.gifApplication trends of autonomous driving SoC in cockpit-driving integration;
20120114.gifRecommended "Turnkey" SoC solutions for autonomous driving;
20120114.gifAutonomous driving SoC product selection and cost analysis;
20120114.gifIs it feasible for OEMs to independently make chips (autonomous driving SoC)?
20120114.gifApplication of chiplet in autonomous driving SoC;
20120114.gifApplication of computing in memory (CIM) in autonomous driving SoC.

In driving-parking integration market, single-SoC and multi-SoC solutions have their own target customers. 

At this stage, Mobileye still rules the roost in the entry level L2 (intelligent front view all-in-one). In the short term, new products like TI TDA4L (5TOPS) pose a challenge to Mobileye in L2. For L2+ driving and driving-parking integration, most automakers currently adopt multi-SoC solutions.  Examples include Tesla’s "dual FSD", “triple Horizon J3” on Roewe RX5, "Horizon J3 + TDA4"on Boyue L and Lynk & Co 09, and "dual ORIN" on NIO ET7, IM L7 and Xpeng G9/P7i among others.

According to the production deployment plans of OEMs and Tier 1 suppliers, for lightweight (cost-effective) driving-parking integration, the fusion of driving and parking domains complicates the embedded system design, and poses higher requirements for algorithm model, chip computing power calling (time division multiplexing), computational efficiency of SoC, and costs of SoC and domain control materials.

AD SOC 1_副本.png


20120114.gifCost-effective single-SoC solutions: for passenger cars valued at RMB100,000-200,000, the mass production and deployment of the solutions will peak in 2023. The single-SoC driving-parking integrated solutions generally use Horizon J3/J5, TI TDA4VM/TDA4VH/TDA4VM-Q1 Plus, and Black Sesame A1000/A1000L chips. With cost advantages, they can further lower the BOM cost (bill of materials) of entire domain controllers. For example, based on single A1000 SoC and supporting the 10V (camera) NOA function, Black Sesame’s driving-parking integrated solution can enable the reduction of the BOM cost of domain controllers to less than RMB3,000, and supports 50-100T physical computing power. 

20120114.gifCost-effective multi-SoC solutions: oriented to passenger cars valued at RMB150,000-250,000, overlapping with those carrying single-SoC solutions, the solutions contain dual TDA4, Horizon J2/J3+TDA4, dual Horizon J3, dual EQ5H, dual Horizon J3+NXP S32G, and triple Horizon J3. Multi-SoC solutions remain superior in safety redundancy and reserve space for OTA updates.

High-level driving-parking integration needs access to more cameras with higher resolution, as well as 4D radars and LiDAR. The BEV+Transformer neural network model is larger and more complex, and may even need to support local algorithm training, so it requires high enough computing power, CPU compute up to at least 150KDMIPS, and AI compute up to least 100TOPS.

High-level driving-parking integration targets high-end new energy vehicles priced at not lower than RMB250,000, with low price sensitivity but higher requirements for power consumption and efficiency of AI chips. In particular, high-compute chips have an impact on the endurance range of new energy vehicles, so that chip vendors have to introduce ever more advanced processes and more energy-efficient chip products.

20120114.gifHigh-end single SoC solutions: single Horizon J5 and single Black Sesame A1000/A1000 pro solutions gain popularity, and support the application and deployment of 1-2L+11V+5R and leading intelligent driving algorithm models like BEV. In the next stage, single Qualcomm Snapdragon Ride, single Ambarella CV3-AD, and single ORIN chips may also be used by some OEMs as main solutions.

?High-end multi-SoC solutions: dual Nvidia Orin-X and dual FSD are still the mainstream solutions for most of mid- and high-end new energy vehicle models, including the full range of Tesla models, Li Auto L9, Xpeng G9/P7i, IM L7 and Lotus. NIO ET7/ET5 even uses four Orin-X SoCs, two for daily driving computation, and the other two for algorithm training and backup redundancy.

Autonomous driving is facing the contradiction between high computing power and low power consumption, and CIM AI chips may become the ultimate solution. 

The popularity of ChatGPT indicates the development directions of autonomous driving: foundation models and high computing power. For large neural network models such as Transformer, the computation will multiply by 750 times every two years on average; for video, natural language processing and speech models, the computation will increase by 15 times every two years on average. It is conceivable that Moore's Law will cease to apply, and the "storage wall" and "power consumption wall" will become the key constraints on the development of AI chips.  

AD SOC 2_副本.png

At present, most of conventional computing architectures are von Neumann architecture with high flexibility. Yet the problems faced by AI chips are computing power bottleneck and large data transfer, which bring high power consumption.

The computing in memory (CIM) technology is expected to be a solution to the contradiction between high computing power and low power consumption. Computing in memory (CIM) refers to data operation in memory to avoid the "storage wall" and "power consumption wall" caused by data transfer and enable far higher parallelism and energy efficiency of data.

AD SOC 3_副本.png

In the automotive field, highly autonomous vehicles will become a running supercomputing center in a sense, with increasing computing power, up to more than 1000TOPS. Cloud computing has sufficient power and can cool down via cooling system, while vehicle edge computing is powered by a battery, facing problems of liquid cooling and cost at the same time.

CIM AI chips will be a new technology path option for automakers.

In the field of autonomous driving SoC, Houmo.ai is the first autonomous driving CIM AI chip vendor in China. In 2022, it successfully lightened the industry's first high-compute CIM AI chip on which the intelligent driving algorithm model runs smoothly. This verification sample uses a 22nm process and boasts computing power of 20TOPS, which can be expanded to 200TOPS. Noticeably the energy efficiency ratio of its computing unit is as high as 20TOPS/W. It is known that Houmo.ai will introduce a production-ready intelligent driving CIM chip soon, and we will share its performance in the report.

AD SOC 4.png

In the future, as with power batteries, chips will become an investment hotspot for large OEMs.

That OEMs make chips is an extremely controversial issue. In the industry, it is a popular belief that on one hand, OEMs cannot rival specialist IC design companies in development speed, efficiency, and product performance; on the other hand, only when the shipment of a single chip reaches at least one million units can its development cost can be continuously diluted to make it cost-effective. 

But in fact, chips have played an absolutely dominant part in intelligent connected new energy vehicles in performance, cost, and supply chain safety. Compared with the typical fuel-powered vehicle that needs 700-800 chips, a new energy vehicle needs 1,500-2,000 units, and a highly autonomous new energy vehicle even needs as many as 3,000 units, some of which are highly valued, high-cost chips that may be in short supply and even out of stock.

It is obvious that large OEMs do not want to be bound by some chip vendor, and they even have already begun to manufacture chips independently. In Geely’s case, the automaker has spawned 7nm cockpit SoCs and installed them in vehicles, and has also accomplished IGBT tape-out. The autonomous driving SoC AD1000, jointly developed by ECARX and SiEngine, is expected to be taped out in March 2024 at the earliest.

AD SOC 5_副本.png

We predict that as with power batteries, chips will become an investment hotspot for large OEMs to strengthen their underlying basic capabilities. In 2022, Samsung announced that it will make chips for Waymo, Google's self-driving division; GM Cruise also announced independent development of autonomous driving chips; Volkswagen announced that it will establish a joint venture with Horizon Robotics, a Chinese autonomous driving SoC vendor.

At the China EV100 Forum 2022, Horizon Robotics opened the IP license of BPU (Brain Processing Unit), its high-performance autonomous driving processor architecture on the basis of its business model of "chip + algorithm + tool chain + development platform", in a bid to meet the needs of some automakers with great ability to develop independently, thereby improving their differentiated competitive edges and accelerating their pace of R&D and innovation. As an IP provider that supports automakers to self-develop computing solutions, Horizon Robotics has confirmed a BPU IP licensing model partner and is developing another automaker partner. 

AD SOC 6_副本.png

The technical barriers for chip fabrication are not particularly high. The primary threshold is enough capital and order intake. The chip industry now adopts the block-building model, namely, purchasing IPs to build chips including CPU, GPU, NPU, storage, NoC/bus, ISP and video codec. In the future, as chiplet ecosystems and processes get improved, the threshold for independent development of autonomous driving SoCs will be much lower for automakers just need to buy dies (IP chip) directly and then package them, with no need to buy IPs.

In the case of Tesla HW 3.0, the architecture design is based on Samsung Exynos-IP; the CPU/GPU/ISP design uses ARM’s IP; the network-on-chip (NoC) uses Arteris’ IP. Tesla only self-develops neural network accelerator (NNA) IP, and the foundry is Samsung.

Tesla deepens its cooperation with Broadcom on HW 4.0 development. To improve AI computing power, the easiest and most effective way is to stack up MAC units and SRAM. For AI operations, the main bottleneck is storage. The disadvantage is that SRAM occupies a large space of chips, and the chip area is however proportional to the cost. Moreover, it is difficult to increase the density and reduce the area of SRAM using advanced processes. 

Therefore the area of Tesla's first-generation bare chip FSD HW 3.0 is 260 square millimeters, and the area of the second-generation bare chip FSD HW 4.0 is expected to be up to 300 square millimeters, with the total cost estimated to increase by at least 40-50%. By our estimate, the cost of HW3.0 chips has dropped to USD90-100, and HW 4.0 should cost USD150-200, but even so, Tesla’s self-developed chips are far more cost-effective than the bought-in. 

AD SOC 7.png

In the long run, OEMs with millions of sales  are feasible to make chips on their own.

1 Autonomous Driving SoC Market and Configuration Data 
1.1 Autonomous Driving SoC Market Size and Market Share 
1.1.1 Evolution Path of Autonomous Driving: ADAS → L2 + Driving-parking Integration → L3/L4 Full Self-driving (FSD) in All Scenarios
1.1.2 Installation Rate of L1-L4 Autonomous Driving Hardware Systems for Passenger Cars in China
1.1.3 China Autonomous Driving SoC Market Size 
1.1.4 Global Autonomous Driving SoC Market Size
1.1.5 Market Shares of Autonomous Driving SoC Vendors in China: Summary for 2022 and Outlook for 2023
1.2 Autonomous Driving SoC Deployment Schemes of OEMs  
1.2.1 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (1)
1.2.2 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (2)
1.2.3 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (3)
1.2.4 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (4)
1.2.5 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (5)
1.2.6 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (6)
1.2.7 Autonomous Driving SoC Solution Portfolios and System Solution Configurations of OEMs (Including Ongoing Research Projects) (7)
1.3 Application and Configuration Strategy of Autonomous Driving SoC in Driving-parking Integration  
1.3.1 Classification of Driving-parking Integration Modes
1.3.2 Configuration Schemes of Some Mainstream Driving-parking Integrated Products Suppliers  
1.3.3 "Cost-effective" and "High-performance" Driving-parking Integrated Product and Solution Portfolios of Horizon Robotics  
1.3.4 Technical Features Required for Single-SoC Driving-parking Integration
1.3.5 Production and Configuration Schemes of Cost-effective Driving-parking Integrated Chips: Equipped with 1, 2 or 3 SoCs (1)
1.3.6 Production and Configuration Schemes of Cost-effective Driving-parking Integrated Chips: Equipped with 1, 2 or 3 SoCs (2) 
1.3.7 Production and Configuration Schemes of Cost-effective Driving-parking Integrated Chips: Equipped with 1, 2 or 3 SoCs (3) 
1.3.8 Production and Configuration Schemes of High Performance Driving-parking Integrated Chips: Equipped with 1, 2, 4, 5 or 6 SoCs (1)  
1.3.9 Production and Configuration Schemes of High Performance Driving-parking Integrated Chips: Equipped with 1, 2, 4, 5 or 6 SoCs (2)
1.3.10 Typical Driving-parking Integrated Solutions of OEMs: Li Auto AD Pro and AD Max 
1.3.11 Typical Driving-parking Integrated Solutions of OEM: Typical Cooperation Cases - Horizon Robotics and Roewe, Li Auto and Geely
1.4 Application Trends of Autonomous Driving SoC in Cockpit-driving Integration
1.4.1 Evolution of Automotive E/E Architecture: from Distributed to Centralized
1.4.2 Evolution of Automotive E/E Architecture: Cockpit-driving Integrated Central Computing Platform Is the Ultimate Form of Automotive AI Computing Architecture 
1.4.3 Evolution of Automotive E/E Architecture: Cockpit-driving Integrated E/E Architecture Planning of OEMs
1.4.4 Evolution of Automotive E/E Architecture: Three Cockpit-driving Integration Modes 
1.4.5 Challenge 1 in One-box Cockpit-driving Integration: Chip (1)
1.4.6 Challenge 1 in One-box Cockpit-driving Integration: Chip (2)
1.4.7 Challenge 1 in One-box Cockpit-driving Integration: Chip (3)
1.4.8 Challenge 1 in One-box Cockpit-driving Integration: Chip (4)
1.4.9 Challenge 1 in One-box Cockpit-driving Integration: Chip (5)
1.4.10 Challenge 1 in One-box Cockpit-driving Integration: Chip (6)
1.4.11 Challenge 2 in One-box Cockpit-driving Integration: Operating System
1.4.12 Challenge 3 in One-box Cockpit-driving Integration: Hypervisor
1.4.13 Layout Schemes of Cockpit-driving Integrated/Central Computing Platforms 
1.4.14 Current Mainstream Cockpit-driving Integrated Solutions of Tier 1 Suppliers 
1.4.15 Cockpit-driving Integrated Solution Cases: Jidu JET "All-domain Fusion" Cockpit-driving Integrated Solution
1.4.16 Cockpit-driving Integrated Solution Cases: ECARX Super Brain (Cockpit-driving Integrated Central Computing Platform) 
1.4.17 Cockpit-driving Integrated Solution Cases: Evolution Route of Bosch Cockpit-driving Integration (1)
1.4.18 Cockpit-driving Integrated Solution Cases: Evolution Route of Bosch Cockpit-driving Integration (2) 
1.4.19 Cockpit-driving Integrated Solution Cases: Desay SV’s Cross-domain Integrated Computing Platform - Aurora (1)
1.4.20 Cockpit-driving Integrated Solution Cases: Desay SV’s Cross-domain Integrated Computing Platform - Aurora (2)
1.4.21 Cockpit-driving Integrated Solution Cases: Desay SV’s Cross-domain Integrated Computing Platform - Aurora (3)
1.4.22 Cockpit-driving Integrated Solution Cases: Desay SV’s Cross-domain Integrated Computing Platform - Aurora (4)   

2 Autonomous Driving SoC Selection and Cost  
2.1 Comparison of Characteristics between Autonomous Driving SoC Vendors and Their "Turnkey" Solutions
2.1.1 It Needs to Balance Performance, Power Consumption and Cost When Choosing A Right Autonomous Driving SoC 
2.1.2 Key Benefits and Features of China-made High-compute Chips
2.1.3 "Turnkey" Solutions of Autonomous Driving SoC Vendors (1)
2.1.4 "Turnkey" Solutions of Autonomous Driving SoC Vendors (2)
2.1.5 The Original Tier 2 Automotive Chip Vendors Have Transformed into Core Suppliers 
2.2 Autonomous Driving SoC Selection
2.2.1 Global Autonomous Driving SoC Selection
2.2.2 China Autonomous Driving SoC Selection 
2.3 Cost of Autonomous Driving SoC 
2.3.1 Cost of Main Autonomous Driving SoC Vendors (1)
2.3.2 Cost of Main Autonomous Driving SoC Vendors (2)
2.3.3 Factors Affecting the Cost of Autonomous Driving SoCs 
2.3.4 Single-chip Driving-parking Integrated Solutions for Autonomous Driving Help Automakers Further Reduce Costs

3 Development Trends of Autonomous Driving SoC 
3.1 Is It Feasible for OEMs to Independently Make Chips (Autonomous Driving SoC)
3.1.1 Automakers and Autonomous Driving Companies Are Very Willing to Make Chips (Autonomous Driving SoC)  
3.1.2 Horizon Robotics Proposes An Open BPU IP Licensing Model and Deepens Cooperation with OEMs to Develop Chips 
3.1.3 Key Technologies Required for High-performance Automotive Chip Architecture 
3.1.4 It Takes A Long Time to Spawn Autonomous Driving SoCs  
3.1.5 Automotive Supply Chain Standard System Specifications That Automotive Chips Need To Meet 
3.1.6 Design Method for Autonomous Driving SoC: Purchasing or Self-developing IPs + Building Blocks, with Capital Being the Basic Threshold
3.1.7 Autonomous Driving SoC Network-on-Chip (NOC) IP 
3.1.8 Autonomous Driving SoC CPU IP: ARM Cortex-A78AE/ARM Neoverse
3.1.9 Autonomous Driving SoC CPU IP: RISC-V
3.1.10 Autonomous Driving SoC GPU IP
3.1.11 Autonomous Driving SoC NPU IP: AI Accelerator Supplier
3.1.12 Autonomous Driving SoC ISP IP: (1) The Value and Significance of ISP to Autonomous Driving 
3.1.13 Autonomous Driving SoC ISP IP: (2) ISP Architecture and Functions of Major Vendors
3.1.14 Autonomous Driving SoC ISP IP: (3) 
3.1.15 Summary: Feasible Strategic Options for Automakers to Make Chips
3.2 Application of Chiplet in Autonomous Driving SoC
3.2.1 Three Drivers of Chiplet: "Storage Wall", the Achilles’ Heel of AI Computing Power 
3.2.2 Three Drivers of Chiplet: Cost and Yield of High-performance Chips
3.2.3 Three Drivers of Chiplet: Flexibility and IP Reusability 
3.2.4 Two Core Technical Frameworks of Chiplet (1): Chiplet Communication Protocol
3.2.5 Two Core Technical Frameworks of Chiplet (2): Underlying Packaging Technology That Supports Chiplet
3.2.6 Chiplet Application Cases
3.2.7 Chiplet Supply Chain in China
3.2.8 As the Boundary between PC and Vehicle Is Blurred, Chiplets Will Shift from Server and PC to Vehicle 
3.2.9 More Attempts to Package Automotive Chiplets Will Be Made to Meet Automotive Requirements for Reliability and Cost
3.2.10 Chiplets Will Power Autonomous Driving SoC to Enable Super Heterogeneous Integrated Computing Platforms
3.3 Application of Computing In Memory (CIM) in Autonomous Driving SoC
3.3.1 Significance of Computing In Memory (CIM) to Autonomous Driving 
3.3.2 Concept Map of Computing In Memory (CIM) Technology: CIM Breaks the Bottleneck of Von Neumann Architecture 
3.3.3 Generalized Computing In Memory (CIM) Solutions: Processing Near Memory, Processing In Memory, and Computing In Memory
3.3.4 Processing In Memory (PIM) Commercialization Cases: Samsung Aquabolt-XL HBM2-PIM
3.3.5 Processing In Memory (PIM) Commercialization Cases: Intel Neuromorphic Computing Chip - Loihi
3.3.6 Processing In Memory (PIM) Commercialization Cases: AMD MI300 GPU
3.3.7 Real Storage and Computing Integration: Computing In Memory (CIM)
3.3.8 Computing In Memory (CIM) Faces the Main Challenge of Choosing Storage Medium Technology Route
3.3.9 CIM Chip Companies in China and Their Selection of Technology Route 

4 Global Autonomous Driving Chip Vendors
4.1 NVIDIA
4.1.1 Automotive Business in 2022
4.1.2 Autonomous Driving Chip Strategy
4.1.3 Autonomous Driving SoC Portfolio
4.1.4 Thor Central Computer
4.1.4.1 Release of Thor (Nvidia Cancels Atlan Chip and Launches Thor to Replace Orin SoC)
4.1.4.2 Thor: FP8 Formats in Cooperation with ARM and Intel
4.1.4.3 Thor: Automotive Centralized Computers
4.1.4.4 Thor Architecture Design 
4.1.5 ORIN SoC
4.1.5.1 ORIN SoC Architecture: Frame Diagram
4.1.5.2 ORIN SoC Architecture: Functional Design
4.1.5.3 ORIN SoC Architecture: CPU
4.1.5.4 ORIN SoC Architecture: GPU
4.1.5.5 ORIN SoC Architecture: Deep Learning Accelerator (DLA)
4.1.5.6 ORIN SoC Architecture: Programmable Vision Accelerator (PVA) and (VPI)
4.1.5.7 ORIN SoC Architecture: Interfaces
4.1.5.8 Frame Diagram of Intelligent Driving Domain Controllers with Orin as the Core
4.1.5.9 ORIN Series: ORIN-X/ORIN-N, etc.
4.1.5.10 ORIN Lineup: entry-level ORIN-Nano
4.1.6 Autonomous Driving "Turnkey" Solution: Hyperion
4.1.6.1 Drive Hyperion Technology Roadmap
4.1.6.2 Strategic Cooperation with Foxconn Based on Drive Hyperion Design Architecture
4.1.6.3 Drive Hyperion 9 Will Be Launched in 2024 and Mounted on Vehicles in 2026
4.1.6.4 Drive Hyperion 9 Will Adopt the Latest Hopper GPU Architecture
4.1.6.5 Drive Hyperion 8
4.1.6.6 Drive Hyperion 8.1: Development Platform Architecture for L2+
4.1.6.7 Drive Hyperion 8.1: Development Platform Architecture for L3
4.1.6.8 Drive Hyperion 8.1: Development Platform Architecture for L3/L4
4.1.6.9 Drive Hyperion 8.1: Velodyne LiDAR
4.1.6.10 Drive Hyperion 8.1: Broadcom BCM8957X Ethernet Switch
4.1.6.11 DRIVE AutoPilot (for L2+, based on Xavier)
4.1.7 Autonomous Driving Software and Algorithms
4.1.7.1 Autonomous Driving Full Stack Toolchain
4.1.7.2 Software Solutions
4.1.7.3 Algorithm Library: VPI

4.2 Mobileye
4.2.1 Operating Performance in 2022: Orders and Major Customers
4.2.2 Operating Performance in 2022: Forecast for SuperVision Mass Production  
4.2.3 Operating Performance in 2022: Significant Increase in SoC Shipments and ASP
4.2.4 Redefining ODD from the Perspective of Consumers
4.2.5 Defining Eyes-off ODD from the Perspective of Consumers
4.2.6 Roadmap of Consumer-based Redefined ODD Chips, Sensors and Domain Controllers
4.2.7 Product Portfolio: L2-L4 Autonomous Driving Solutions
4.2.8 Product Portfolio: L4 Solutions
4.2.9 Product Portfolio: Domain Controller Design Reference
4.2.10 Main Intelligent Driving Solutions: EyeQ5+SuperVision for L2+
4.2.11 Main Intelligent Driving Solutions: L4 Drive for L3/L4.
4.2.12 Main Intelligent Driving Solutions: L4 Autonomous Driving Solutions Based on Six EyeQ5 Chips
4.2.13 Tools and Software: EyeQ Toolkit and REM Crowdsourced Mapping
4.2.14 Tools and Software: REM Crowdsourced Mapping
4.2.15 Sensors: 4D Imaging Radar, Flash LiDAR, FMCW LiDAR
4.2.16 Sensors: Performance Estimation of 4D Imaging Radar
4.2.17 Sensors: Upcoming Cooperation with Wistron NeWeb Corporation (WNC) in Producing Software-defined Imaging Radar 
4.2.18 Sensors: Planned Provision of Autonomous Driving Kit including Chips/Vision/Radar
4.2.19 Autonomous Driving SoC Portfolio
4.2.20 EyeQ Lineup: Typical Technical Parameters
4.2.21 EyeQ Lineup: EyeQ Ultra, EyeQ6L and EyeQ6H
4.2.22 EyeQ Lineup: EyeQ? Ultra? SoC
4.2.23 EyeQ Lineup: System Architecture of EyeQ? Ultra?
4.2.24 EyeQ Lineup: EyeQ? 6L/6H SoC
4.2.25 EyeQ Lineup: Architecture Diagram of EyeQ? 6H SoC
4.2.26 EyeQ Lineup: Architecture Diagram of EyeQ? 6L SoC
4.2.27 EyeQ Lineup: EyeQ6 with Intel Atom 
4.2.28 EyeQ Lineup: Frame Diagram of EyeQ5 SoC
4.2.29 EyeQ Lineup: Functional Module Diagram of EyeQ5 SoC
4.2.30 EyeQ Lineup: EyeQ5 SoC Open Platform (allowing third-party code to run)
4.2.31 EyeQ Lineup: EyeQ4 SoC

4.3 Qualcomm
4.3.1 Automotive Business in 2022
4.3.2 Autonomous Driving SoCs: Snapdragon Ride Flex SoC
4.3.3 Autonomous Driving SoCs: Snapdragon Ride SoC (SA8540P+ SA9000P)
4.3.4 Autonomous Driving SoCs: Topological Architecture of Snapdragon Ride SoC
4.3.5 Autonomous Driving SoCs: Snapdragon Ride Development Platform
4.3.6 Autonomous Driving SoCs: Snapdragon Ride Platform and Arriver Software Stack 
4.3.7 Autonomous Driving "Turnkey" Solution: Snapdragon Ride? platform
4.3.8 Autonomous Driving Software: Arriver Vision Software Stack
4.3.9 Autonomous Driving Customers

4.4 TI
4.4.1 Operation in 2022
4.4.2 Automotive Business Layout
4.4.3 Autonomous Driving SoC Portfolio
4.4.4 Jacinto 7 Automotive Processor Platform: Overview
4.4.5 Jacinto 7 Automotive Processor Platform: Multifunctional Integration of ADAS-SoC
4.4.6 Jacinto 7 Automotive Processor Platform: Hyperheterogeneous Design
4.4.7 Autonomous Driving SoCs: TDA4x SoC Family
4.4.8 Autonomous Driving SoCs: Applications of TDA4x SoC
4.4.9 Autonomous Driving SoCs: TDA4AH SoC (Pre-release) 
4.4.10 Autonomous Driving SoCs: TDA4VM SoC (Mass-produced)
4.4.11 Autonomous Driving SoCs: Application Frame Diagram of TDA4VM SoC
4.4.12 Autonomous Driving SoCs: Core Features of TDA4VM SoC - Multi-stage Processing and Low Power Consumption
4.4.13 Autonomous Driving SoCs: Functional Safety Island of TDA4VM MCU 
4.4.14 Autonomous Driving Software Algorithms: Matrix Multiply Accelerator (MMA) for Deep Learning of TDA4VM SoC 
4.4.15 Autonomous Driving Software Algorithms: Deep Learning (DL)
4.4.16 Autonomous Driving Software Algorithms: TDA4x SoC Automated Parking Data Flow 
4.4.17 Autonomous Driving Software Algorithms: TDA4x SoC Software Stack and Load
4.4.18 Autonomous Driving Software Algorithms: OpenVX, the Key Algorithm of TDA4x SoC 
4.4.19 Application Cases of Autonomous Driving SoCs

4.5 Renesas
4.5.1 Automotive Business in 2022
4.5.2 Automotive Chip Capacity and Expansion Plan (1)
4.5.3 Automotive Chip Capacity and Expansion Plan (2)
4.5.4 Automotive Chip Business Strategy (1): Continuous M & A for Expanding Business Scope
4.5.5 Automotive Chip Business Strategy (2): Continuous M & A for Expanding Business Scope
4.5.6 Automotive Chip Business Strategy (3): ADAS and "Electric Drive, Battery and Electric Control” Chips
4.5.7 Automotive Chip Business Strategy (4): ADAS and "Electric Drive, Battery and Electric Control” Chips
4.5.8 Automotive Chip Business Strategy (4): Cross-Domain/Zone Architecture
4.5.9 Autonomous Driving SoC Portfolio (1)
4.5.10 Autonomous Driving SoC Portfolio (2)
4.5.11 Autonomous Driving SoCs: R-Car Series 
4.5.12 Autonomous Driving SoCs: R-Car ADAS Chip Roadmap
4.5.13 Autonomous Driving SoCs: R-Car V3U SoC
4.5.14 Autonomous Driving SoCs: Key Features of R-Car V3U SOC
4.5.15 Autonomous Driving SoCs: Internal Framework of R-Car V3U SoC
4.5.16 Autonomous Driving SoCs: Video Processing Pipeline of R-Car V3U SoC
4.5.17 Autonomous Driving SoCs: R-Car V3U SoC Adopts Low-power Imagination GPU 
4.5.18 Autonomous Driving SoCs: Modular Design of R-Car V3U SoC
4.5.19 Autonomous Driving SoCs: Global Customer Base of R-Car V3U SoC
4.5.20 Autonomous Driving SoCs: R-Car V3H SoC
4.5.21 Autonomous Driving SoCs: Block Diagram of R-Car V3H SoC
4.5.22 Autonomous Driving SoCs: Performance Parameters of R-Car V3H SoC
4.5.23 Autonomous Driving SoCs: R-Car V3H SoC Features Ultra-low Power 
4.5.24 Autonomous Driving SoCs: R-Car V3H SoC Has Outstanding Visual Performance
4.5.25 Autonomous Driving SoCs: R-Car V3H SoC Is Applied to L4 Computing Platforms
4.5.26 Autonomous Driving SoCs: R-Car V3H2 SoC Is an Upgraded Version of R-Car V3H SoC
4.5.27 Autonomous Driving SoCs: Block Diagram of R-Car V3M SoC
4.5.28 Autonomous Driving "Turnkey" Solution: EagleCAM Developer Platform
4.5.29 Autonomous Driving Software: R-Car Software Development Kit (SDK)
4.5.30 Autonomous Driving Software:  Cross-platform, Scalable and Reusable R-Car

4.6 Ambarella
4.6.1 Profile
4.6.2 Global Business Layout
4.6.3 Technology and Product Strategies: "Algorithm First"
4.6.4 Technology and Product Strategies: Prioritizing Visual Solutions
4.6.5 Technology and Product Strategies: AI Intelligent Algorithm Accelerator Architecture - CVflow
4.6.6 Technology and Product Strategies: Emphasis on Computational Efficiency
4.6.7 Technology and Product Strategies: Acquisition of Oculii, a radar company 
4.6.8 Technology and Product Strategies: Oculii’s Core Technology - Virtual Aperture AI Radar Algorithm
4.6.9 Technology and Product Strategies: Scenario Examples of Oculii’s 4D Imaging Radar
4.6.10 Technology and Product Strategies: Focus on Centralized 4D Imaging Radar Architecture
4.6.11 Technology and Product Strategies: Comparison between Centralized and Edge 4D Imaging Processing Technologies
4.6.12 Autonomous Driving SoCs: Portfolio
4.6.13 Autonomous Driving SoCs: Application Fields 
4.6.14 Autonomous Driving SoCs: Product Architecture
4.6.15 Autonomous Driving SoCs: CV3
4.6.16 Autonomous Driving SoCs: A Number of CV3 Series Chips with Different Positioning Solutions Will Be Launched in the Future
4.6.17 Autonomous Driving SoCs: Domain Controller Architecture Based on CV3
4.6.18 Autonomous Driving SoCs: Ambarella Expanded CV3 Family of Automotive AI Domain Controllers with New CV3-AD685 at CES 2023
4.6.19 Autonomous Driving SoCs: Key Features of CV3-AD685
4.6.20 Autonomous Driving SoCs: What Can CV3-AD685 Bring to Customers?
4.6.21 Autonomous Driving SoCs: Tier1 Customers of CV3-AD685
4.6.22 Autonomous Driving SoCs: CV2x Series AI Vision Autonomous Driving Chips 
4.6.23 Autonomous Driving SoCs: CV2x Series, CV22AQ
4.6.24 Autonomous Driving SoCs: CV2x Series, CV22FS and CV2FS 
4.6.25 Autonomous Driving SoCs: Cooperation Cases of CV2x Series
4.6.26 Automotive Software Partners

4.7 NXP
4.7.1 Operation in 2022
4.7.2 Autonomous Driving SoC Portfolio
4.7.3 S32x Series Chip Lineup
4.7.4 S32 ADAS Chips
4.7.5 S32 ADAS Chip Technology Route
4.7.6 Architecture Features of S32V2/S32V3 ADAS Chips
4.7.7 AI Tool Software Development Kit
4.7.8 BlueBox3.0 Computing Platform  

4.8 Xilinx
4.8.1 AMD Acquired the World's Largest FPGA Maker Xilinx in 2022 
4.8.2 AMD's Operation in 2022
4.8.3 Automotive Business 
4.8.4 Application Fields of ADAS/AD Products 
4.8.5 FPGA Devices Conform to the Development Trend of ADAS Sensors
4.8.6 Route and Layout of FPGA Devices
4.8.7 Autonomous Driving SoC Portfolio (1)
4.8.8 Autonomous Driving SoC Portfolio (2)
4.8.9 The Next-generation Automotive-grade Versal AI Edge Series (7nm) 
4.8.10 SoC+FPGA Series Products
4.8.11 Expandable Product Series
4.8.12 Versal ACAP Series (1)
4.8.13 Versal ACAP Series (2)
4.8.14 Features of Zynq UltraScale+ MPSoC
4.8.15 Autonomous Driving System Based on FPGA+CPU
4.8.16 Unified Software Platform For AI and Machine Learning & Reasoning: Vitis AI 2.0 
4.8.17 Unified Software Development Platform: Vitis AI 1.0 Accelerating Xilinx’s Transformation into a Software Supplier 
4.8.18 Unified Software Development Platform: Application of Vitis AI 1.0 in Smart Cars
4.8.19 AD System Architecture Solutions
4.8.20 FPGA Empowers Binocular Vision and 4D Radar 
4.8.21 FMCW Empowers LiDAR
4.8.22 FPGA Empowers Intelligent Cockpit DMS/ICMS 
4.8.23 FPGA Empowers Autonomous Driving Sensor Fusion
4.8.24 FPGA Empowers New Energy Vehicles
4.8.25 FPGA Empowers Security Gateways

4.9 Tesla
4.9.1 System Parameter Evolution of FSD HW1.0-HW4.0
4.9.2 HW4.0 Computing Platform (1)
4.9.3 HW4.0 Computing Platform (2)
4.9.4 HW4.0 Computing Platform (3)
4.9.5 HW4.0 Computing Platform (4)
4.9.6 HW4.0 Computing Platform (5)
4.9.7 HW3.0 SoC: Chip IP
4.9.8 HW3.0 SoC: Chip Internal Structure 
4.9.9 HW3.0 SoC: NNA Design Principle, Initial Network, Circular Convolution and Actuation 
4.9.10 HW3.0 SoC NPU Design
4.9.11 Automotive Central Computing Platform: Interconnected via PCIe
 
5 Chinese Autonomous Driving Chip Vendors
5.1 Horizon Robotics
5.1.1 Business Models:  Four Cooperation Modes Positioned at Tier2
5.1.2 Business Models: Shelf-style Product Portfolio Positioned at Tier2
5.1.3 Business Models: BPU IP Authorization Mode
5.1.4 Business Models: Establishment of a Joint Venture with Volkswagen CARIAD
5.1.5 Product Portfolio (1)
5.1.6 Product Portfolio (2)
5.1.7 Journey Series AI Chips: Continuous Evolution from Gaussian Architecture, Bernoulli Architecture, Bayesian Architecture to Nash Architecture 
5.1.8 Journey Series AI Chips: Technology Roadmap
5.1.9 Journey Series AI Chips: Development Concept of J6 (BPU with Nash Architecture)
5.1.10 Journey Series AI Chips: J5 (1) - Bayesian Architecture
5.1.11 Journey Series AI Chips: J5 (2) - System Parameters
5.1.12 Journey Series AI Chips: J5 (3) - Neural Network Model
5.1.13 Journey Series AI Chips: J5 (4) - High-speed NOA
5.1.14 Journey Series AI Chips: J5 (5) - City NOA Based on a Single Chip
5.1.15 Journey Series AI Chips: J5 (6) - Security Management System
5.1.16 Journey Series AI Chips: J5 (7) - Functional Safety Certification
5.1.17 Journey Series AI Chips: J5 (8) - Ecosystem Construction
5.1.18 Journey Series AI Chips: J3 (1)
5.1.19 Journey Series AI Chips: J3 (2)
5.1.20 Journey Series AI Chips: J2 (1)
5.1.21 Journey Series AI Chips: J2 (2)
5.1.22 Journey Series AI Chips: Technical Parameters of J2, J3 and J5
5.1.23 Journey Series AI Chips: The Maximum Computing Performance of FPS Is Continuously Improved through the Compiler
5.1.24 Intelligent Computing Reference Platform: Evolution of Horizon Matrix Series
5.1.25 Intelligent Computing Reference Platform: Parameters of Matrix 5 Series
5.1.26 Intelligent Computing Reference Platform: Matrix 5 Verification and Adaptation Process
5.1.27 Intelligent Computing Reference Platform: Matrix 5 Mass Production Acceleration Software Package
5.1.28 Intelligent Computing Reference Platform: Matrix 5 Cooperation Modes, Hardware IDH Partners
5.1.29 "Turnkey" Solutions: Front View ADAS and L2+ Solutions Based on Journey 3
5.1.30 "Turnkey" Solutions: Horizon Matrix? FSD Solution Based on Journey 5
5.1.31 "Turnkey" Solutions: Horizon Halo? Automotive Intelligent Interactive Solution Based on Journey 3
5.1.32 "Turnkey" Solutions: Horizon Matrix Mono 2.0 - Monocular Front View Solution Based on Journey 2
5.1.33 Driving and Parking Integrated Solutions: Different Chips for Diversified Demand
5.1.34 Driving and Parking Integrated Solutions: A Number of Tier1 Suppliers Have Realized Mass Production and Applications of Driving and Parking Integrated Solutions Based on Journey Chips
5.1.35 Driving and Parking Integrated Solutions: OEM Mass Production Cases
5.1.36 Software and Toolchain: Framework
5.1.37 Software and Toolchain: Together OS - RTOS with Microkernel Architecture (1)
5.1.38 Software and Toolchain: Together OS - RTOS with Microkernel Architecture (2)
5.1.39 Software and Toolchain: TGCW AI Chip Toolchain (1)
5.1.40 Software and Toolchain: TGCW AI Chip Toolchain (2)
5.1.41 Software and Toolchain: TGCW AI Chip Toolchain (3)
5.1.42 Software and Toolchain: “AIDI" Data Closed-loop Development Platform
5.1.43 Computing Architecture: Migration from "Intelligent Computing 1.0" to "Intelligent Computing 2.0"
5.1.44 Customer System: Pursuit of "More, Faster, Better and More Economical"
5.1.45 Customer System: The Shipments Had Exceeded 2 Million Units by the end of 2022 
5.1.46 Customer System: The Latest Cooperation Case with Tier1 Supplierss

5.2 Black Sesame Technologies
5.2.1 Profile
5.2.2 Market Positioning: Tier 2 Supplier
5.2.3 Core Technical Features
5.2.4 AI Chip Portfolio  
5.2.5 Wudang Series Chips: C1200 Cross-domain Computing Chip for Smart Cars 
5.2.6 Wudang Series Chips: C1200 Supports Single-chip Cross-domain Computing Scenarios, Providing a Cost-Effective Solution 
5.2.7 Huashan Series Chips: Technology Roadmap 
5.2.8 Huashan Series Chips: Topology Diagram of Development Technology Environment 
5.2.9 Huashan Series Chips: Key Technology Layout 
5.2.10 Huashan Series Chips: Index Parameters of A1000L/ A1000/ A1000 Pro Chips 
5.2.11 Huashan Series Chips: Huashan No.2 A1000 Pro
5.2.12 Huashan Series Chips: Huashan No.2 A1000 - System Block Diagram
5.2.13 Huashan Series Chips: Huashan No.2 A1000 - Key Technical Parameters
5.2.14 Huashan Series Chips: Huashan No.2 A1000/A1000L - Key Performance Parameters
5.2.15 Huashan Series Chips: Multiple Automotive-grade Certifications 
5.2.16 Autonomous Driving Software and Hardware Reference Solutions: Drive-BEST 
5.2.17 Autonomous Driving Software and Hardware Reference Solutions: FAD Autonomous Driving Computing Platform 
5.2.18 AI Algorithm Development Toolchain: "Shanhai Artificial Intelligence Development Platform” 
5.2.19 "Turnkey" Solutions: Drive Sensing - High-level Single-SoC Driving and Parking Integrated Solution 
5.2.20 "Turnkey" Solutions: End-to-end Full Stack Perception Solution 
5.2.21 CVIS Layout: FAD Edge Roadside Perception Computing Platform 
5.2.22 CVIS Layout: Cooperation with Baidu PaddlePaddle in CVIS Industrial Ecology 
5.2.23 Cooperation and Mass Production Projects  
5.2.24 5.2.29 Ecosystem  

5.3 SemiDrive 
5.3.1 Profile
5.3.2 Processor Lineup
5.3.3 Processor Layout: Future Central Computing Architecture
5.3.4 Central Computing Architecture: SCCA 1.0
5.3.5 Autonomous Driving Chips: Product Roadmap
5.3.6 Autonomous Driving Chips: Product Portfolio
5.3.7 Autonomous Driving Chips: Comparison between Index Parameters of V9L/V9F/V9T Chips
5.3.8 Autonomous Driving Chips:  Features of V9T SoC
5.3.9 Autonomous Driving Chips: Architectural Diagram of V9T SoC
5.3.10 Autonomous Driving Chips: Block Diagram of V9T SoC
5.3.11 Autonomous Driving Platform: UniDrive
5.3.12 Ecological Partners

5.4 Huawei
5.4.1 Autonomous Driving SoC Portfolio
5.4.2 Autonomous Driving SoCs: Ascend 910/310 Main Control Chip
5.4.3 Autonomous Driving SoCs: Ascend 910/310 with Huawei's Self-developed DaVinci Architecture
5.4.4 Autonomous Driving SoCs: Performance Parameters of Ascend 310
5.4.5 Autonomous Driving SoCs: Performance Parameters of Ascend 910
5.4.6 Autonomous Driving SoCs: Ascend Chip Technology Route Planning
5.4.7 Autonomous Driving SoCs: Application in MDC Computing Platform

5.5 HOUMO.AI
5.5.1 Focus on High Computing Power AI Chips Integrating Storage and Computing
5.5.2 Technical Background of "Integration of Storage and Computing":  High Computing Power + Low Power Consumption
5.5.3 Technical Background of "Integration of Storage and Computing":  Physical Computing Power of More Than 60 TOPS under Natural Air Cooling 
5.5.4 Architecture Design Concept of AI Chips Integrating Storage and Computing
5.5.5 Automotive High Computing Power Chips Integrating Storage and Computing
5.5.6 Roadmap of Automotive High Computing Power Chips
5.5.7 AI Development Toolchain of Automotive High Computing Power Chips
5.5.8 Vision for Development: Moving towards 1P/W Computing Power

5.6 Chiplego 
5.6.1 R&D of Automotive High Computing Power Chips by Chiplet Technology 
5.6.2 Core Technology Logic and Development Concept

5.7 Kunlunxin
5.7.1 Kunlunxin Targets Dedicated Chips. BYD Becomes a Shareholder
5.7.2 Product Orientation: Both the Second- and Third-generation AI Chips of Kunlunxin Can Serve Autonomous Driving Systems
5.7.3 Second-generation AI Chips: 7nm Process; 256TOPS
5.7.4 Adaptation Results of Second-generation AI Chips in Autonomous Driving
5.7.5 Product Roadmap
5.7.6 Application Framework: Wenxin Big Model “Perception 2.0" Architecture of Baidu Apollo
5.7.7 Application Framework: Autonomous Driving May Be Integrated with Ernie Bot in the Future
5.7.8 Application Framework: Computing Infrastructure Is Required for Large Generative AI Models
5.7.9 Application Framework: Baidu Ernie Bot

5.8 RHINO
5.8.1 Focus on Data Closed-loop-defined High Computing Power Chips

5.9 Dahua Leapmotor Lingxin
5.9.1 Leapmotor Lingxin 01 Autonomous Driving Chips: Technology Architecture and Features 
5.9.2 Leapmotor Lingxin 01 Autonomous Driving Chips: Technical Parameters

5.10 Cambricon SingGo
5.10.1 Profile
5.10.2 Autonomous Driving Chips: Product strategy
5.10.3 Autonomous Driving Chips: "Cloud-Roadside-Terminal-Vehicle Collaboration"
5.10.4 Autonomous Driving Chips: "Vehicle-Cloud Collaboration Facilitates Data Closed-loop and AI Optimization"
5.10.5 “Vehicle-Cloud” Chips for Autonomous Driving
5.10.6 Autonomous Driving AI Toolchain
 

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号