China Intelligent Driving Fusion Algorithm Research Report, 2024
  • May 2024
  • Hard Copy
  • USD $4,500
  • Pages:380
  • Single User License
    (PDF Unprintable)       
  • USD $4,300
  • Code: ZXF008
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,400
  • Hard Copy + Single User License
  • USD $4,700
      

Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and enhanced planning and control become the trend.

China Intelligent Driving Fusion Algorithm Research Report, 2024 released by ResearchInChina analyzes the status quo and trends of intelligent driving fusion algorithms (including perception, positioning, prediction, planning, decision, etc.), sorts out algorithm solutions and cases of chip vendors, OEMs, Tier1 & Tier2 suppliers and L4 algorithm providers, and summarizes the development trends of intelligent driving algorithms.

Since the period of eight months from Musk's live test drive of FSD V12 Beta in August 2023 to the 30-day free trial of FSD V12 Supervised in March 2024, advanced intelligent driving such as urban NOA has begun to become the arena of major OEMs, and there have been ever more application cases for end-to-end algorithms, BEV Transformer algorithms, and AI foundation model algorithms.

1. Sparse algorithms improve efficiency and reduce intelligent driving cost.

At present, most BEV algorithms are dense and consume considerable computing power and storage. The smoothness of more than 30 frames per second requires expensive computing resources such as NVIDIA A100. Even so, only 5 to 6 2MP cameras can be supported. For 8MP cameras, extremely expensive resources like multiple H100 GPUs are needed.

Our real world has sparse features. Sparsification helps sensors reduce noise and improve robustness. In addition, as distance increases, grids are bound to be sparse, and a dense network can only be maintained within about 50 meters. By reducing queries and feature interactions, sparse perception algorithms speed up calculations and lower storage requirements, greatly improve the computing efficiency and system performance of the perception model, shorten the system latency, expand the perception accuracy range, and ease the impact of vehicle speed.

融合算法 1_副本.png

Therefore, the academia has shifted to sparse target-level algorithms rather than dense grid-based algorithms since 2021. With long-term efforts, sparse target-level algorithms can perform almost as well as dense grid-based algorithms. The industry also keeps iterating sparse algorithms. Recently, Horizon Robotics has open-sourced Sparse4D, its vision-only algorithm which ranks first on both nuScenes vision-only 3D detection and 3D tracking lists.?

Sparse4D is a series of algorithms moving towards long-time-sequence sparse 3D target detection, belonging to the scope of multi-view temporal fusion perception technology. Facing the industry development trend of sparse perception, Sparse4D builds a pure sparse fusion perception framework, which makes perception algorithms more efficient and accurate and simplifies perception systems. Compared with dense BEV algorithms, Sparse4D reduces the computational complexity, breaks the limit of computing power on the perception range, and outperforms dense BEV algorithms in perception effect and reasoning speed.

Another significant advantage of sparse algorithms is to cut down the cost of intelligent driving solutions by reducing dependence on sensors and consuming less computing power. For example, Megvii Technology mentioned that taking a range of measures, for example, optimizing the BEV algorithm, reducing computing power, removing HD maps, RTK and LiDAR, unifying the algorithm framework, and automatic annotation, it has lowered the costs of its intelligent driving solutions based on PETR series sparse algorithms by 20%-30%, compared with conventional solutions on the market.

2. 4D algorithms offer higher accuracy and make intelligent driving more reliable.

As seen from the sensor configurations of OEMs, in recent three years ever more sensors have been installed, with increasing intelligent driving functions and application scenarios. Most urban NOA solutions are equipped with 10-12 cameras, 3-5 radars, 12 ultrasonic radars and 1-3 LiDARs.?

融合算法 2_副本.png

With the increasing number of sensors, ever more perception data are generated. How to improve the utilization of the data is also placed on the agenda of OEMs and algorithm providers. Although the algorithm details of companies are a little different, the general ideas of the current mainstream BEV Transformer solutions are basically the same: conversion from 2D to 3D and then to 4D.

Temporal fusion can greatly improve the algorithm continuity, and the memory of obstacles can handle occlusion and allows for better perception the speed information. The memory of road signs can improve the driving safety and the accuracy of vehicle behavior prediction. The fusion of information from historical frames can improve the perception accuracy of the current object, while the fusion of information from future frames can verify the object perception accuracy, thereby enhancing the algorithm reliability and accuracy.
?
Tesla's Occupancy Network algorithm is a typical 4D algorithm.

融合算法 3_副本.png

Tesla adds the height information to the vector space of 2D BEV+ temporal information output by the original Transformer algorithm to build the 4D space representation form of 3D BEV + temporal information. The network runs every 10ms on the FSD, that is, it runs at 100FPS, which greatly improves the speed of model detection.?

融合算法 4.png

3. End-to-end algorithms integrating perception, planning and control enable more anthropomorphic intelligent driving.

Mainstream intelligent driving algorithms have adopted the “BEV+Transformer” architecture, and many innovative perception algorithms have emerged. However, rule-based algorithms still prevail among planning and control algorithms. Some OEMs face technical and practical challenges in both perception and planning & control systems, which are sometimes in a "split" state. In some complex scenarios, the perception module may fail to accurately recognize or understand the environmental information, and the decision module may make incorrect driving decisions due to improper handling of the perception results or algorithm limitations. This restricts the development of advanced intelligent driving to some extent.?

UniAD, an end-to-end intelligent driving algorithm jointly released by SenseTime, OpenDriveLab and Horizon Robotics, was rated as the Best Paper in CVPR2023. UniAD integrates three main tasks (perception, prediction and planning) and six sub-tasks (target detection, target tracking, scene mapping, trajectory prediction, grid prediction and path planning) into a unified end-to-end network framework based on Transformer for the first time to attain a general model of full-stack task-critical driving. Under the nuScenes real scene dataset, UniAD performs all tasks best in the field, especially in terms of the prediction and planning results far better the previous best solution.?????

The basic end-to-end algorithm enables direct inputs from sensors and predictive control outputs, but it is difficult to optimize, because of lacking effective feature communication between network modules and effective interaction between tasks and needing to output results in phases. The decision-oriented perception and decision integrated design proposed by the UniAD algorithm uses token features for deep fusion according to the perception-prediction-decision process, so that the indicators of all tasks targeting decision are consistently improved.??

融合算法 5_副本.png

In terms of planning and control algorithms, Tesla adopts an approach of interactive search + evaluation model to enable a comfortable and effective algorithm that combines conventional search algorithms with artificial intelligence:

Firstly, candidate objects are obtained according to lane lines, occupancy networks and obstacles, and then decision trees and candidate object sequences are generated.
The trajectory for reaching the above objects is constructed synchronously using conventional search and neural networks;
The interaction between the vehicle and other participants in the scene is predicted to form a new trajectory. After multiple evaluations, the final trajectory is selected. During the trajectory generation, Tesla applies conventional search algorithms and neural networks, and then scores the generated trajectory according to collision check, comfort analysis, the possibility of the driver taking over and the similarity with people, to finally decide the implementation strategy.??

融合算法 6.png

XBrain, the ultimate architecture of Xpeng’s all-scenario intelligent driving, is composed of XNet 2.0, a deep vision neural network, and XPlanner, a planning and control module based on a neural network. XPlanner is a planning and control algorithm based on a neural network, with the following features:
Rule algorithm
Long time sequence (minute-level)
Multi-object (multi-agent decision, gaming capability)
Strong reasoning

The previous advanced algorithms and ADAS functional architectures were separated and consisted of many small logic planning and control algorithms for sub-scenes, while XPlanner has a unified planning and control algorithm architecture. XPlanner is supported by a foundation model and a large number of extreme driving scenes for simulation training, thus ensuring that it can cope with various complex situations.

融合算法 7.png

1 Overview of Intelligent Driving Fusion Algorithms
1.1 Intelligent Driving Algorithms: Perception, Decision, Actuation (1)
1.1 Intelligent Driving Algorithms: Perception, Decision, Actuation (2)
1.1 Intelligent Driving Algorithms: Perception, Decision, Actuation (3)
1.1 Intelligent Driving Algorithms: Perception, Decision, Actuation (4)
1.1 Intelligent Driving Algorithms: Perception, Decision, Actuation (5)
1.2 Intelligent Driving Algorithms: Iteration History
1.3 Intelligent Driving Perception Algorithms - Visual Perception 
1.3.1 Visual Perception Algorithms (1)
1.3.2 Visual Perception Algorithms (2)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (1)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (2)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (3)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (4)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (5)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (6)
1.3.3 Intelligence Driving Perception Algorithms - LiDAR Perception (7)
1.3.4 Intelligence Driving Perception Algorithms - Radar Perception
1.3.5 Intelligent Driving Decision Algorithms
1.3.6 Intelligent Driving Control Algorithms
1.4 Intelligent Driving Fusion Algorithms (1)
1.4 Intelligent Driving Fusion Algorithms (2)
1.4 Intelligent Driving Fusion Algorithms (3)
1.4 Intelligent Driving Fusion Algorithms (4)
1.4.1 Temporal Fusion Algorithms
1.4.2 DNN Algorithms  
1.4.3 CNN Algorithms  
1.4.4 YOLO V3 Algorithms  
1.4.5 RNN Algorithms  
1.4.6 3D Bounding Box Algorithms  
1.4.7 6D-Vision Algorithms  
1.4.8 VFM Algorithms  
1.4.9 Pseudo-LiDAR
1.4.10 Algorithm Solutions Integrating Traditional Algorithms and Neural Networks 
1.4.11 DETR3D Algorithms
1.4.12 Far3D Algorithms
1.4.13 Sparse BEV Algorithms
1.4.14 PETR Algorithms
1.4.15 Sparse 4D Algorithms (1)
1.4.15 Sparse 4D Algorithms (2)
1.4.15 Sparse 4D Algorithms (3)
1.4.15 Sparse 4D Algorithms (4)
1.5 Application Cases of OEM Fusion Algorithms
1.5.1 Application Cases of OEM Fusion Algorithms (1) 
1.5.2 Application Cases of OEM Fusion Algorithms (2)
1.5.3 Application Cases of OEM Fusion Algorithms (3)
1.6 Comparison among OEM Fusion Algorithm Models
1.7 Comparison among Tier 1 Fusion Algorithm Models
1.8 Intelligent Driving Algorithm Supply Models
1.9 Development Trends of Intelligent Driving Fusion Algorithms 
1.9.1 Development Trends of Intelligent Driving Fusion Algorithms (1)
1.9.2 Development Trends of Intelligent Driving Fusion Algorithms (2)
1.9.3 Development Trends of Intelligent Driving Fusion Algorithms (3)
1.9.4 Development Trends of Intelligent Driving Fusion Algorithms (4)
1.9.5 Development Trends of Intelligent Driving Fusion Algorithms (5)
1.9.6 Development Trends of Intelligent Driving Fusion Algorithms (6)
1.9.7 Development Trends of Intelligent Driving Fusion Algorithms (7)
1.9.8 Development Trends of Intelligent Driving Fusion Algorithms (8)
1.9.9 Development Trends of Intelligent Driving Fusion Algorithms (9)

2 End-to-end Algorithms
2.1 End-to-end Intelligent Driving Becomes a Long-Term Consensus   
2.1.1 How to Build an End-to-end Neural Network Foundation Model of Intelligent Driving?
2.1.2 End-to-end Algorithms (1)
2.1.3 End-to-end Algorithms (2)
2.1.4 End-to-end Algorithms (3)
2.1.5 End-to-end Algorithms (4)
2.2 Occupancy Networks
2.2.1 Occupancy Networks (1)
2.2.2 Occupancy Networks (2)
2.2.3 Occupancy Networks (3)
2.2.4 Occupancy Networks (4)
2.2.5 Occupancy Networks (5)
2.2.6 Occupancy Networks (6)
2.3 Application Cases of End-to-end Algorithms
2.3.1 Application Cases of End-to-end Algorithms (1) 
2.3.2 Application Cases of End-to-end Algorithms (2) 
2.3.3 Application Cases of End-to-end Algorithms (3)
2.3.4 Application Cases of End-to-end Algorithms (4)
2.3.5 Application Cases of End-to-end Algorithms (5) 
2.3.6 Application Cases of End-to-end Algorithms (6)
2.3.7 Application Cases of End-to-end Algorithms (7)
2.3.8 Application Cases of End-to-end Algorithms (8)

3 BEV Transformer Foundation Model Algorithms
3.1 From Small Models to Foundation Models
3.1.1 BEV Perception Systems
3.1.2 Three Common Transformers
3.1.3 BEV Det
3.1.3 BEV Stereo
3.1.3 SOLOFusion
3.1.3 VideoBEV 
3.1.4 Inverse Perspective Mapping
3.1.4 BEV Former
3.2 BEV+Transformer Algorithms
3.2.1 BEV + Transformer Foundation Models (1)
3.2.2 BEV + Transformer Foundation Models (2)
3.2.3 BEV + Transformer Foundation Models (3)   
3.3 Comparison among OEM BEV+Transformer Algorithms 
3.3.1 Progress of OEM BEV+Transformer Algorithms
3.3.2 Cases of OEM BEV+Transformer Algorithms (1) 
3.3.3 Cases of OEM BEV+Transformer Algorithms (2)
3.3.4 Cases of OEM BEV+Transformer Algorithms (3)
3.4 Comparison among BEV+Transformer Algorithms of Tier 1 Suppliers
3.4.1 Cases of Tier 1 BEV+Transformer Algorithms (1)
3.4.2 Cases of Tier 2 BEV+Transformer Algorithms (1)
3.4.3 Cases of Tier 3 BEV+Transformer Algorithms (1)
3.4.4 Cases of Tier 4 BEV+Transformer Algorithms (1)

4 Data Is the Cornerstone of Fusion Algorithms
4.1 Data Is the Cornerstone of Fusion Algorithms
4.1.1 Datasets: How to Collect
4.1.2 Datasets: Evolution from Single-vehicle Intelligence to Vehicle-city Integration
4.1.3 Datasets: From Perception to Prediction and Planning 
4.1.4 Datasets: Multimodal, End-to-end
4.1.5 Next-generation Datasets
4.2 Intelligent Driving Dataset Comparison
4.2.1 Intelligent Driving Dataset Comparison (1)
4.2.2 Intelligent Driving Dataset Comparison (2)
4.2.3 Intelligent Driving Dataset Comparison (3)
4.2.4 Intelligent Driving Dataset Comparison (4)
4.2.5 Intelligent Driving Dataset Comparison (5)
4.2.6 Intelligent Driving Dataset Comparison (6)
4.3 Major Data Training Set Suppliers and Their Products
4.3.1 Major Data Training Set Suppliers and Their Products (1)
4.3.2 Major Data Training Set Suppliers and Their Products (2)
4.3.3 Major Data Training Set Suppliers and Their Products (3)
4.3.4 Major Data Training Set Suppliers and Their Products (4)
4.3.5 Major Data Training Set Suppliers and Their Products (5)
4.4 Application Cases of Datasets in Intelligent Driving
4.4.1 Application Cases of Datasets in Intelligent Driving (1)
4.4.2 Application Cases of Datasets in Intelligent Driving (2)
4.4.3 Application Cases of Datasets in Intelligent Driving (3)
4.4.4 Application Cases of Datasets in Intelligent Driving (4)
4.4.5 Application Cases of Datasets in Intelligent Driving (5)
4.4.6 Application Cases of Datasets in Intelligent Driving (6)
4.4.7 Application Cases of Datasets in Intelligent Driving (7)
4.4.8 Application Cases of Datasets in Intelligent Driving (8)
4.4.9 Application Cases of Datasets in Intelligent Driving (9)

5 Algorithms of Chip Vendors
5.1 Huawei
5.1.1 Intelligent Automotive Solution (IAS) Business Unit (BU)
5.1.2 Cooperation Modes
5.1.3 Intelligent Driving Full Stack Solutions (1)  
5.1.4 Intelligent Driving Full Stack Solutions (2)
5.1.5 Intelligent Driving Perception Algorithms: GOD 2.0&RCR 2.0 
5.1.6 Intelligent Driving Perception Algorithms: Occupancy
5.1.7 Intelligent Driving Perception Algorithms: Transfusion 
5.2 Horizon Robotics
5.2.1 Profile
5.2.2 Cooperation Modes
5.2.3 Automotive Computing Platforms and Monocular Front View Solution Algorithms
5.2.4 Intelligent Driving Perception Algorithm Design (1)
5.2.4 Intelligent Driving Perception Algorithm Design (2)
5.2.4 Intelligent Driving Perception Algorithm Design (3)
5.2.5 Core Algorithm Libraries (1)
5.2.5 Core Algorithm Libraries (2)
5.2.5 Core Algorithm Libraries (3)
5.2.6 NOA Solutions and Super Driving Solution Algorithms
5.2.7 Open Software Platforms
5.2.8 Official Open Source Sparse4D Algorithms
5.2.9 Algorithm Planning
5.2.10 Recent Dynamics in Cooperation
5.3 Black Sesame Technologies
5.3.1 Profile
5.3.2 Visual Perception Algorithms
5.3.3 4D Radar and Visual Perception Fusion Algorithms
5.3.4 LiDAR DSP
5.3.5 PointPillars Algorithms
5.3.6 Parking Visual Perception Algorithms
5.3.7 Driving Visual Perception Algorithms
5.3.8 Shanhai Toolchain
5.3.9 Partners
5.3.10 Recent Dynamics in Cooperation
5.4 Mobileye
5.4.1 Profile
5.4.2 Full Stack Intelligent Driving Solutions        
5.4.3 Object Recognition Technology
5.4.4 Chip Algorithm Development Process
5.4.5 Vision Algorithms
5.4.6 Recent Dynamics in Cooperation
5.5 Qualcomm Arriver
5.5.1 Profile
5.5.2 Visual Perception Algorithms
5.6 NXP
5.6.1 Profile
5.6.2 ADAS Software and Hardware Solutions
5.6.3 Object Detection Algorithms
5.6.4 CNN Algorithms for Object Detection
5.7 NVIDIA
5.7.1 Profile
5.7.2 Cooperation Mode
5.7.3 Intelligent Vehicle Software Stacks
5.7.4 DRIVE Perception Algorithms (1)
5.7.4 DRIVE Perception Algorithms (2)
5.7.4 DRIVE Perception Algorithms (3) 
5.7.5 Perception Algorithm End-to-end Models: PiloNet to NVRadarNet
5.7.6 Recent Dynamics in Cooperation
5.7.7 Automotive Partner Technology Exhibition and Ecological Cooperation at CES 2024

6 Algorithms of Tier 1 & Tier 2 Vendors
6.1 Momenta
6.1.1 Profile
6.1.2 Core Algorithms
6.1.3 Algorithm Application
6.1.4 Mapless Intelligent Driving Algorithms
6.1.5 DDLD Lane Line Recognition Algorithm 
6.1.6 DDPF Location Fusion Algorithm
6.1.7 DLP Planning and Control Algorithm
6.1.8 Algorithm Development Route
6.1.9 Recent Dynamics in Cooperation
6.2 Nullmax
6.2.1 Profile
6.2.2 Algorithms and Modules
6.2.3 Core Algorithms (1)
6.2.3 Core Algorithms (2)
6.2.3 Core Algorithms (3)
6.2.4 Application Process of Algorithm Products
6.2.5 Recent Dynamics in Cooperation
6.3 ArcSoft
6.3.1 Profile
6.3.2 Intelligent Driving Technology (1)
6.3.3 Intelligent Driving Technology (2)
6.3.4 One-stop Automotive Vision Solution: VisDrive
6.3.5 Recent Dynamics and Development Planning
6.4 JueFX Technology
6.4.1 Profile
6.4.2 Visual Feature Fusion Positioning Solutions
6.4.3 BEV Perception Technology
6.4.4 BEV+Transformer Algorithms (1)
6.4.4 BEV+Transformer Algorithms (2) 
6.4.4 BEV+Transformer Algorithms (3) 
6.4.5 LiDAR Fusion Positioning Solutions
6.4.6 Architecture of Highway NOA Solutions with Low-weight Maps
6.4.7 Real-time Online Mapping
6.4.8 Automatic Annotation Systems
6.4.9 Multi-sensor Fusion Positioning Algorithms (1)
6.4.9 Multi-sensor Fusion Positioning Algorithms (2)
6.4.9 Multi-sensor Fusion Positioning Algorithms (3)
6.4.10 Different Fusion Algorithm Solutions Based on LiDAR
6.4.11 Perception Foundation Model Algorithms Based on Data Closed Loop
6.4.12 Cooperation Ecology
6.5 StradVision
6.5.1 Profile
6.5.2 Intelligent Driving Algorithms (1)
6.5.2 Intelligent Driving Algorithms (2)
6.5.3 Next-generation "3D Perception Network"
6.5.4 Development Dynamics of Vision Products
6.6 iMotion
6.6.1 Profile
6.6.2 Core Intelligent Driving Algorithms
6.6.3 Mass Production
6.7 EnjoyMove Technology
6.7.1 Profile
6.7.2 Intelligent Driving Software 
6.7.3 Recent Dynamics
6.8 Haomo.AI
6.8.1 Profile
6.8.2 Product Matrix
6.8.3 Status Quo of Intelligent Driving 
6.8.4 MANA System
6.8.5 Perception Module of MANA System
6.8.5 Cognitive Module of MANA System
6.8.6 Intelligent Computing Center 
6.8.7 Perception Algorithm Optimization
6.8.8 Cognitive Algorithm Optimization
6.9 In-driving Tech
6.9.1 Profile
6.9.2 Intelligent Driving Algorithms (1)
6.9.3 Intelligent Driving Algorithms (2)
6.9.4 Algorithm Achievements and Planning 
6.10 Valeo
6.10.1 Profile
6.10.2 Typical Algorithm Models (1)
6.10.2 Typical Algorithm Models (2)

7 Algorithms of Emerging Automakers and OEMs
7.1 Tesla
7.1.1 Profile
7.1.2 End-to-end Algorithms
7.1.3 Multi-camera Fusion Algorithms
7.1.4 Environment Perception Algorithms
7.1.5 Computing Power Development Planning
7.2 NIO
7.2.1 Profile
7.2.2 Intelligent Driving System Evolution
7.2.3 Comparison between Pilot System and NAD System
7.3 Li Auto
7.3.1 Profile
7.3.2 Intelligent Driving Route
7.3.3 Algorithm Evolution
7.3.4 Intelligent Driving Algorithm Architecture of AD Max 3.0
7.3.5 Layout in Intelligent Driving
7.3.6 Future Automotive Development Plan
7.4 Xpeng
7.4.1 Profile
7.4.2 Intelligent Driving System and Algorithm Evolution
7.4.3 Intelligent Driving Algorithm Architecture
7.4.4 New Perception Architecture (1)
7.4.4 New Perception Architecture (2)
7.4.4 New Perception Architecture (3)
7.4.5 Recent Cooperation Dynamics and Development Planning
7.5 Leapmotor
7.5.1 Profile
7.5.2 Global Independent R&D
7.5.3 Intelligent Driving Technology Planning
7.6 ZEEKR
7.6.1 Profile
7.6.2 ZEEKR & Mobileye Intelligent Driving Solution
7.6.3 ZEEKR & Waymo Intelligent Driving Solution
7.7 BMW
7.7.1 Profile
7.7.2 Intelligent Driving
7.7.3 Intelligent Driving Implementation and Development Planning
7.7.4 Dynamics in Recent Intelligent Driving
7.8 SAIC
7.8.1 Intelligent Driving Layout
7.8.2 Profile of Z-One
7.8.3 Computing Platform of Z-One
7.8.4 SAIC AI LAB
7.9 GM
7.9.1 Intelligent Driving Layout
7.9.2 Profile and Recent Dynamics of Cruise
7.9.3 Perception Algorithms of Cruise
7.9.4 Decision Algorithms of Cruise
7.9.5 Intelligent Driving Development Toolchain of Cruise
7.9.6 Development Planning of Cruise

8 Robtaxi Algorithms of L4 Intelligent Driving
8.1 Baidu Apollo
8.1.1 Profile
8.1.2 Architecture of Apollo 9.0
8.1.3 Perception Algorithms (1)
8.1.3 Perception Algorithms (2)
8.1.3 Perception Algorithms (3)
8.1.4 CVIS Solutions
8.1.5 The Latest Intelligent Driving Solutions (1)
8.1.5 The Latest Intelligent Driving Solutions (2)
8.1.6 Intelligent Driving Solutions (1)
8.1.6 Intelligent Driving Solutions (2)
8.2 Pony.ai
8.2.1 Profile
8.2.2 Main Businesses and Business Models
8.2.3 Core Technology and the Latest Intelligent Driving System Configuration 
8.2.4 Sensor Fusion Solutions
8.2.5 Intelligent Driving Solutions
8.2.6 Recent Dynamics in Cooperation
8.3 WeRide
8.3.1 Profile
8.3.2 Intelligent Driving Platform
8.3.3 WeRide One Algorithm Module
8.3.4 Recent Dynamics in Cooperation
8.4 DeepRoute.ai
8.4.1 Profile
8.4.2 Full Stack Solutions for L4 Autonomous Driving
8.4.3 Self-developed Algorithms
8.4.4 Intelligent Driving Solutions
8.4.5 Recent Dynamics in Cooperation
8.5 QCraft
8.5.1 Profile
8.5.2 Intelligent Driving Solutions
8.5.3 Hyper-converged Perception Solutions
8.5.4 Prediction Algorithms
8.5.5 Planning Algorithms
8.5.6 Classic Algorithm Models 
8.6 UISEE
8.6.1 Profile
8.6.2 Intelligent Driving System
8.6.3 Vision Positioning Technology
8.6.4 The Latest Algorithm
8.6.5 Recent Cooperation Dynamics and Partners
8.7 Didi Autonomous Driving
8.7.1 Profile
8.7.2 Intelligent Driving Technology
8.7.3 Application of Intelligent Driving Technology
8.8 Waymo
8.8.1 Profile
8.8.2 Sensor Matrix
8.8.3 Intelligent Driving Algorithms
8.8.4 Behavior Prediction Algorithms
8.8.5 Recent Dynamics
 

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号