End-to-end Autonomous Driving (E2E AD) Research Report, 2024
  • Apr.2024
  • Hard Copy
  • USD $2,700
  • Pages:200
  • Single User License
    (PDF Unprintable)       
  • USD $2,500
  • Code: GX012
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $2,900
      

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving

1. Status quo of end-to-end solutions in China
An end-to-end autonomous driving system refers to direct mapping from sensor data inputs (camera images, LiDAR, etc.) to control command outputs (steering, acceleration/deceleration, etc.). It first appeared in the ALVINN project in 1988. It uses cameras and laser rangefinders as input and a simple neural network to generate steering as output.

In early 2024, Tesla rolled out FSD V12.3, featuring an amazing intelligent driving level. The end-to-end autonomous driving solution garners widespread attention from OEMs and autonomous driving solution companies in China.?

Compared with conventional multi-module solutions, the end-to-end autonomous driving solution integrates perception, prediction and planning into a single model, simplifying the solution structure. It can simulate human drivers making driving decisions directly according to visual inputs, effectively cope with long tail scenarios of modular solutions and improve the training efficiency and performance of models.

端到端 1_副本.png

端到端 2_副本.png

端到端 3_副本.png

Li Auto's end-to-end solution
Li Auto believes that a complete end-to-end model should cover the whole process of perception, tracking, prediction, decision and planning, and it is the optimal solution to achieve L3 autonomous driving. In 2023, Li Auto pushed AD Max3.0, with overall framework reflecting the end-to-end concept but still a gap with a complete end-to-end solution. In 2024, Li Auto is expected to promote the system to become a complete end-to-end solution.?

Li Auto's autonomous driving framework is shown below, consisting of two systems:
Fast system: System 1, Li Auto’s existing end-to-end solution which is directly executed after perceiving the surroundings.
Slow system: System 2, a multimodal large language model that logically thinks and explores unknown environments to solve problems in unknown L4 scenarios.

端到端 4_副本.png

In the process of promoting the end-to-end solution, Li Auto plans to unify the planning/forecast model and the perception model, and accomplish the end-to-end Temporal Planner on the original basis to integrate parking with driving.

2. Data becomes the key to the implementation of end-to-end solutions.
The implementation of an end-to-end solution requires processes covering R&D team building, hardware facilities, data collection and processing, algorithm training and strategy customization, verification and evaluation, promotion and mass production. Some of the sore points in scenarios are as shown in the table:

端到端 5_副本.png

The integrated training in end-to-end autonomous driving solutions requires massive data, so one of the difficulties it faces lies in data collection and processing.
First of all, it needs a long time and may channels to collect data, including driving data and scenario data such as roads, weather and traffic conditions. In actual driving, the data within the driver's front view is relatively easy to collect, but the surrounding information is hard to say.
During data processing, it is necessary to design data extraction dimensions, extract effective features from massive video clips, make statistics of data distribution, etc. to support large-scale data training.

DeepRoute

As of March 2024, DeepRoute.ai's end-to-end autonomous driving solution has been designated by Great Wall Motor and involved in the cooperation with NVIDIA. It is expected to adapt to NVIDIA Thor in 2025. In the planning of DeepRoute.ai, the transition from the conventional solution to the "end-to-end" autonomous driving solution will go through sensor pre-fusion, HD map removal, and integration of perception, decision and control.

端到端 6_副本.png

GigaStudio
DriveDreamer, an autonomous driving model of GigaStudio, is capable of scenario generation, data generation, driving action prediction and so forth. In the scenario/data generation, it has two steps:
When involving single-frame structural conditions, guide DriveDreamer to generate driving scenario images, so that it can understand structural traffic constraints easily.
Extend its understanding to video generation. Using continuous traffic structure conditions, DriveDreamer outputs driving scene videos to further enhance its understanding of motion transformation.

端到端 7_副本.png

3. End-to-end solutions accelerate the application of embodied robots.
In addition to autonomous vehicles, embodied robots are another mainstream scenario of end-to-end solutions. From end-to-end autonomous driving to robots, it is necessary to build a more universal world model to adapt to more complex and diverse real application scenarios. The development framework of mainstream AGI (General Artificial Intelligence) is divided into two stages:
Stage 1: the understanding and generation of basic foundation models are unified, and further combined with embodied artificial intelligence (embodied AI) to form a unified world model;
Stage 2: capabilities of world model + complex task planning and control, and abstract concept induction gradually evolve into the era of the interactive AGI 1.0.

In the landing process of the world model, the construction of an end-to-end VLA (Vision-Language-Action) autonomous system has become a crucial link. VLA, as the basic foundation model of embodied AI, can seamlessly link 3D perception, reasoning and action to form a generative world model, which is built on the 3D-based large language model (LLM) and introduces a set of interactive markers to interact with the environment.

端到端 8_副本.png

As of April 2024, some manufacturers of humanoid robots adopting end-to-end solutions are as follows:

端到端 9_副本.png

For example, Udeer·AI's Large Physical Language Model (LPLM) is an end-to-end embodied AI solution that uses a self-labeling mechanism to improve the learning efficiency and quality of the model from unlabeled data, thereby deepening the understanding of the world and enhancing the robot's generalization capabilities and environmental adaptability in cross-modal, cross-scene, and cross-industry scenarios.

端到端 10_副本.png

LPLM abstracts the physical world and ensures that this kind of information is aligned with the abstract level of features in LLM. It explicitly models each entity in the physical world as a token, and encodes geometric, semantic, kinematic and intentional information.

In addition, LPLM adds 3D grounding to the encoding of natural language instructions, improving the accuracy of natural language to some extent. Its decoder can learn by constantly predicting the future, thus strengthening the ability of the model to learn from massive unlabeled data.

1. Foundation of End-to-end Autonomous Driving Technology

1.1 Terminology and Concept of End-to-end Autonomous Driving
1.1.1 Terminology Explanation of End-to-end Autonomous Driving
1.1.2 Development History of End-to-end Autonomous Driving (1)
1.1.3 Development History of End-to-end Autonomous Driving (2)

1.2 Status Quo of End-to-end Autonomous Driving
1.2.1 Development History of Autonomous Driving Algorithm Industrialization
1.2.2 Status Quo of E2E-AD Model Mass Production
1.2.3 Progress and Challenges of E2E-AD

1.3 Comparison among End-to-end E2E-AD Motion Planning Models
1.3.1 End-to-end E2E-AD Trajectory Planning of Autonomous Driving: Comparison among Several Classical Models in Industry and Academia
1.3.2 Tesla: Perception and Decision-making Full Stack Integrated Model
1.3.3 Model 2
1.3.4 Model 3
1.3.5 Model 4
1.3.6 Model 5

1.4 Comparison among End-to-end E2E-AD Models
1.4.1 Horizon Robotics VADv2: An End-to-end Driving Model Based on Probability Programming 
1.4.2 Model 2
1.4.3 Model 3
1.4.4 Model 4
1.4.5 Model 5

1.5 Typical Cases of End-to-end Autonomous Driving E2E-AD Models
1.5.1 Case 1 - SenseTime’s E2E-AD Model: UniAD
1.5.2 Case 2
1.5.3 Case 3

1.6 Embodied Language Models (ELMs)
1.6.1 ELMs accelerate the landing of End-to-end Solutions 
1.6.2 Foundation Model Application scenarios of ELMs (1)
1.6.2 Foundation Model Application scenarios of ELMs (2)
1.6.2 Foundation Model Application scenarios of ELMs (3)
1.6.2 Foundation Model Application scenarios of ELMs (4)
1.6.2 Foundation Model Application scenarios of ELMs (5)
1.6.2 Foundation Model Application scenarios of ELMs (6)
1.6.2 Foundation Model Application scenarios of ELMs (7)
1.6.3 Limitations and Positive Effects of ELMs

2 Technology Roadmap and Development Trends of End-to-end Autonomous Driving

2.1 Scenario Difficulties
2.1.1 Scenario Difficulties and Solutions: Computing Power Supply/Data Acquisition
2.1.2 Scenario Difficulties and Solutions: Team Building/Interpretability

2.2 Development Trends
2.2.1 Trend 1
2.2.2 Trend 2
2.2.3 Trend 3
2.2.4 Trend 4
2.2.5 Trend 5: Universal World Model: Three Paradigms and System Construction of AGI
2.2.6 Trend 6
2.2.7 Trend 7

3 Application of End-to-end Autonomous Driving in the Field of Passenger Cars

3.1 Dynamics of Domestic End-to-end Autonomous Driving Companies
3.1.1 Comparison among End-to-End Foundation Model Technologies of  OEMs
3.1.2 Comparison among End-to-End Foundation Model Technologies of?Major?Suppliers 
3.1.3 Patents on End-to-End Autonomous Driving of Intelligent Vehicles

3.2 DeepRoute.ai
3.2.1 Implementation Progress of End-to-end Solutions
3.2.2 Difference between End-to-end Solutions and Traditional Solutions

3.3 Haomo.AI
3.3.1 End-to-end Solution Construction Strategy
3.3.2 Reinforcement Learning/Imitation Learning Techniques
3.3.3 Training Methods of End-to-end Solutions

3.4 PhiGent Robotics
3.4.1 Interactive Scenario Diagrams for Agents
3.4.2 GraphAD Construction Path
3.4.3 GraphAD Test Results

3.5 Enterprise 5
3.6 Enterprise 6
3.7 Enterprise 7
3.8 Enterprise 8
3.9 Enterprise 9
3.10 Enterprise 10
3.11 Enterprise 11
3.12 NIO
3.13 Xpeng
3.14 Li Auto
3.14.1 Li Auto's End-to-end Solution
3.14.2 Li Auto's Current Autonomous Driving Solution
3.14.3 Li Auto's DriveVLM  
3.15 Enterprise 15
3.16 Enterprise 16
3.17 XX University
3.18 XX University

4 Application of End-to-end Autonomous Driving in the Field of Robots

4.1 Progress of End-to-end Technology for Humanoid Robots
4.1.1 Humanoid Robots Are the Carrier of Embodied Artificial Intelligence
4.1.2 NVIDIA GTC 2024: Several Core Humanoid Robot Companies Participating in the Conference
4.1.3 Global Demand for Humanoid Robots
4.1.4 Comparison among Global Humanoid Robot Features

4.2 Humanoid Robot: Figure 01
4.2.1 Features of Figure 01
4.2.2 Working Principle of Figure 01
4.2.3 Functions of Figure 01
4.2.4 Development of Figure 01

4.3 Zero Demonstration Autonomous Robot Open Source Model: O Model
4.3.1 Implementation Principle of O Model

4.4 Nvidia's Project GR00T 
4.4.1 Project GR00T - Robot Foundation Model Development Platform  
4.4.2 Project GR00T - Robot Learning and Scaling Development Workflow
4.4.3 Project GR00T - Robot Isaac Simulation Platform 
4.4.4 Project GR00T - Omniverse Replicator Platform

4.5 Robot Case 5

4.6 Robot Case 6

4.7 Robot Case 7

4.8 Robot Case 8

4.9 Robot Case 9

4.10 Status Quo and Future of Foundation Models+Robots
4.10.1 Application of Foundation Models in the Robot Field
4.10.2 End-to-end Application and Future Prospect of Foundation Models in the Robot Field
4.10.3 Future Trends of Embodied Artificial Intelligence

5 How to Implement End-to-end Autonomous Driving Projects?

5.1 E2E-AD Project Implementation Case: Tesla
5.1.1 Development History of Autopilot Hardware and Solutions
5.1.2 Evolution of Self-developed Autopilot Hardware and Computing Power Requirements of FSD v12.3
5.1.3 Autopilot: Multi-task E2E Learning Technical Solutions
5.1.4 E2E Team
5.1.5 Description of Most Key AI Jobs in Recruitment
5.1.6 E2E R&D Investment

5.2 E2E-AD Project Implementation Case: Wayve
5.2.1 Profile
5.2.2 Data Generation Cases of E2E
5.2.3 How to Build an E2E-AD System
5.2.4 Team layout

5.3 Team Building and Project Budget
5.3.1 Autonomous Driving Project: Comparison between Investment and Team Size
5.3.2 E2E-AD Project: Top-level System Design and Organizational Structure Design 
5.3.3 E2E-AD Project: Development Team Layout Budget and Competitiveness Construction
5.3.4 E2E-AD Project: Job Design and Description
5.3.5 Cases of End-to-end Autonomous Driving Team Building of Domestic OEMs

5.9 Automotive E2E Autonomous Driving System Design
5.4.1 E2E-AD Project Development Business Process
5.4.2 Project Business Process Reference (1)
5.4.3 Project Business Process Reference (2)

5.5 Cloud E2E Autonomous Driving System Design
5.5.1 E2E-AD Project Business Process Reference
5.5.2 E2E-AD Project Cloud Design (1)
5.5.3 E2E-AD Project Cloud Design (2)
 

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号