End-to-end Autonomous Driving (E2E AD) Research Report, 2024
  • Apr.2024
  • Hard Copy
  • USD $2,700
  • Pages:200
  • Single User License
    (PDF Unprintable)       
  • USD $2,500
  • Code: GX012
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $2,900
      

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving

1. Status quo of end-to-end solutions in China
An end-to-end autonomous driving system refers to direct mapping from sensor data inputs (camera images, LiDAR, etc.) to control command outputs (steering, acceleration/deceleration, etc.). It first appeared in the ALVINN project in 1988. It uses cameras and laser rangefinders as input and a simple neural network to generate steering as output.

In early 2024, Tesla rolled out FSD V12.3, featuring an amazing intelligent driving level. The end-to-end autonomous driving solution garners widespread attention from OEMs and autonomous driving solution companies in China.?

Compared with conventional multi-module solutions, the end-to-end autonomous driving solution integrates perception, prediction and planning into a single model, simplifying the solution structure. It can simulate human drivers making driving decisions directly according to visual inputs, effectively cope with long tail scenarios of modular solutions and improve the training efficiency and performance of models.

端到端 1_副本.png

端到端 2_副本.png

端到端 3_副本.png

Li Auto's end-to-end solution
Li Auto believes that a complete end-to-end model should cover the whole process of perception, tracking, prediction, decision and planning, and it is the optimal solution to achieve L3 autonomous driving. In 2023, Li Auto pushed AD Max3.0, with overall framework reflecting the end-to-end concept but still a gap with a complete end-to-end solution. In 2024, Li Auto is expected to promote the system to become a complete end-to-end solution.?

Li Auto's autonomous driving framework is shown below, consisting of two systems:
Fast system: System 1, Li Auto’s existing end-to-end solution which is directly executed after perceiving the surroundings.
Slow system: System 2, a multimodal large language model that logically thinks and explores unknown environments to solve problems in unknown L4 scenarios.

端到端 4_副本.png

In the process of promoting the end-to-end solution, Li Auto plans to unify the planning/forecast model and the perception model, and accomplish the end-to-end Temporal Planner on the original basis to integrate parking with driving.

2. Data becomes the key to the implementation of end-to-end solutions.
The implementation of an end-to-end solution requires processes covering R&D team building, hardware facilities, data collection and processing, algorithm training and strategy customization, verification and evaluation, promotion and mass production. Some of the sore points in scenarios are as shown in the table:

端到端 5_副本.png

The integrated training in end-to-end autonomous driving solutions requires massive data, so one of the difficulties it faces lies in data collection and processing.
First of all, it needs a long time and may channels to collect data, including driving data and scenario data such as roads, weather and traffic conditions. In actual driving, the data within the driver's front view is relatively easy to collect, but the surrounding information is hard to say.
During data processing, it is necessary to design data extraction dimensions, extract effective features from massive video clips, make statistics of data distribution, etc. to support large-scale data training.

DeepRoute

As of March 2024, DeepRoute.ai's end-to-end autonomous driving solution has been designated by Great Wall Motor and involved in the cooperation with NVIDIA. It is expected to adapt to NVIDIA Thor in 2025. In the planning of DeepRoute.ai, the transition from the conventional solution to the "end-to-end" autonomous driving solution will go through sensor pre-fusion, HD map removal, and integration of perception, decision and control.

端到端 6_副本.png

GigaStudio
DriveDreamer, an autonomous driving model of GigaStudio, is capable of scenario generation, data generation, driving action prediction and so forth. In the scenario/data generation, it has two steps:
When involving single-frame structural conditions, guide DriveDreamer to generate driving scenario images, so that it can understand structural traffic constraints easily.
Extend its understanding to video generation. Using continuous traffic structure conditions, DriveDreamer outputs driving scene videos to further enhance its understanding of motion transformation.

端到端 7_副本.png

3. End-to-end solutions accelerate the application of embodied robots.
In addition to autonomous vehicles, embodied robots are another mainstream scenario of end-to-end solutions. From end-to-end autonomous driving to robots, it is necessary to build a more universal world model to adapt to more complex and diverse real application scenarios. The development framework of mainstream AGI (General Artificial Intelligence) is divided into two stages:
Stage 1: the understanding and generation of basic foundation models are unified, and further combined with embodied artificial intelligence (embodied AI) to form a unified world model;
Stage 2: capabilities of world model + complex task planning and control, and abstract concept induction gradually evolve into the era of the interactive AGI 1.0.

In the landing process of the world model, the construction of an end-to-end VLA (Vision-Language-Action) autonomous system has become a crucial link. VLA, as the basic foundation model of embodied AI, can seamlessly link 3D perception, reasoning and action to form a generative world model, which is built on the 3D-based large language model (LLM) and introduces a set of interactive markers to interact with the environment.

端到端 8_副本.png

As of April 2024, some manufacturers of humanoid robots adopting end-to-end solutions are as follows:

端到端 9_副本.png

For example, Udeer·AI's Large Physical Language Model (LPLM) is an end-to-end embodied AI solution that uses a self-labeling mechanism to improve the learning efficiency and quality of the model from unlabeled data, thereby deepening the understanding of the world and enhancing the robot's generalization capabilities and environmental adaptability in cross-modal, cross-scene, and cross-industry scenarios.

端到端 10_副本.png

LPLM abstracts the physical world and ensures that this kind of information is aligned with the abstract level of features in LLM. It explicitly models each entity in the physical world as a token, and encodes geometric, semantic, kinematic and intentional information.

In addition, LPLM adds 3D grounding to the encoding of natural language instructions, improving the accuracy of natural language to some extent. Its decoder can learn by constantly predicting the future, thus strengthening the ability of the model to learn from massive unlabeled data.

1. Foundation of End-to-end Autonomous Driving Technology

1.1 Terminology and Concept of End-to-end Autonomous Driving
1.1.1 Terminology Explanation of End-to-end Autonomous Driving
1.1.2 Development History of End-to-end Autonomous Driving (1)
1.1.3 Development History of End-to-end Autonomous Driving (2)

1.2 Status Quo of End-to-end Autonomous Driving
1.2.1 Development History of Autonomous Driving Algorithm Industrialization
1.2.2 Status Quo of E2E-AD Model Mass Production
1.2.3 Progress and Challenges of E2E-AD

1.3 Comparison among End-to-end E2E-AD Motion Planning Models
1.3.1 End-to-end E2E-AD Trajectory Planning of Autonomous Driving: Comparison among Several Classical Models in Industry and Academia
1.3.2 Tesla: Perception and Decision-making Full Stack Integrated Model
1.3.3 Model 2
1.3.4 Model 3
1.3.5 Model 4
1.3.6 Model 5

1.4 Comparison among End-to-end E2E-AD Models
1.4.1 Horizon Robotics VADv2: An End-to-end Driving Model Based on Probability Programming 
1.4.2 Model 2
1.4.3 Model 3
1.4.4 Model 4
1.4.5 Model 5

1.5 Typical Cases of End-to-end Autonomous Driving E2E-AD Models
1.5.1 Case 1 - SenseTime’s E2E-AD Model: UniAD
1.5.2 Case 2
1.5.3 Case 3

1.6 Embodied Language Models (ELMs)
1.6.1 ELMs accelerate the landing of End-to-end Solutions 
1.6.2 Foundation Model Application scenarios of ELMs (1)
1.6.2 Foundation Model Application scenarios of ELMs (2)
1.6.2 Foundation Model Application scenarios of ELMs (3)
1.6.2 Foundation Model Application scenarios of ELMs (4)
1.6.2 Foundation Model Application scenarios of ELMs (5)
1.6.2 Foundation Model Application scenarios of ELMs (6)
1.6.2 Foundation Model Application scenarios of ELMs (7)
1.6.3 Limitations and Positive Effects of ELMs

2 Technology Roadmap and Development Trends of End-to-end Autonomous Driving

2.1 Scenario Difficulties
2.1.1 Scenario Difficulties and Solutions: Computing Power Supply/Data Acquisition
2.1.2 Scenario Difficulties and Solutions: Team Building/Interpretability

2.2 Development Trends
2.2.1 Trend 1
2.2.2 Trend 2
2.2.3 Trend 3
2.2.4 Trend 4
2.2.5 Trend 5: Universal World Model: Three Paradigms and System Construction of AGI
2.2.6 Trend 6
2.2.7 Trend 7

3 Application of End-to-end Autonomous Driving in the Field of Passenger Cars

3.1 Dynamics of Domestic End-to-end Autonomous Driving Companies
3.1.1 Comparison among End-to-End Foundation Model Technologies of  OEMs
3.1.2 Comparison among End-to-End Foundation Model Technologies of?Major?Suppliers 
3.1.3 Patents on End-to-End Autonomous Driving of Intelligent Vehicles

3.2 DeepRoute.ai
3.2.1 Implementation Progress of End-to-end Solutions
3.2.2 Difference between End-to-end Solutions and Traditional Solutions

3.3 Haomo.AI
3.3.1 End-to-end Solution Construction Strategy
3.3.2 Reinforcement Learning/Imitation Learning Techniques
3.3.3 Training Methods of End-to-end Solutions

3.4 PhiGent Robotics
3.4.1 Interactive Scenario Diagrams for Agents
3.4.2 GraphAD Construction Path
3.4.3 GraphAD Test Results

3.5 Enterprise 5
3.6 Enterprise 6
3.7 Enterprise 7
3.8 Enterprise 8
3.9 Enterprise 9
3.10 Enterprise 10
3.11 Enterprise 11
3.12 NIO
3.13 Xpeng
3.14 Li Auto
3.14.1 Li Auto's End-to-end Solution
3.14.2 Li Auto's Current Autonomous Driving Solution
3.14.3 Li Auto's DriveVLM  
3.15 Enterprise 15
3.16 Enterprise 16
3.17 XX University
3.18 XX University

4 Application of End-to-end Autonomous Driving in the Field of Robots

4.1 Progress of End-to-end Technology for Humanoid Robots
4.1.1 Humanoid Robots Are the Carrier of Embodied Artificial Intelligence
4.1.2 NVIDIA GTC 2024: Several Core Humanoid Robot Companies Participating in the Conference
4.1.3 Global Demand for Humanoid Robots
4.1.4 Comparison among Global Humanoid Robot Features

4.2 Humanoid Robot: Figure 01
4.2.1 Features of Figure 01
4.2.2 Working Principle of Figure 01
4.2.3 Functions of Figure 01
4.2.4 Development of Figure 01

4.3 Zero Demonstration Autonomous Robot Open Source Model: O Model
4.3.1 Implementation Principle of O Model

4.4 Nvidia's Project GR00T 
4.4.1 Project GR00T - Robot Foundation Model Development Platform  
4.4.2 Project GR00T - Robot Learning and Scaling Development Workflow
4.4.3 Project GR00T - Robot Isaac Simulation Platform 
4.4.4 Project GR00T - Omniverse Replicator Platform

4.5 Robot Case 5

4.6 Robot Case 6

4.7 Robot Case 7

4.8 Robot Case 8

4.9 Robot Case 9

4.10 Status Quo and Future of Foundation Models+Robots
4.10.1 Application of Foundation Models in the Robot Field
4.10.2 End-to-end Application and Future Prospect of Foundation Models in the Robot Field
4.10.3 Future Trends of Embodied Artificial Intelligence

5 How to Implement End-to-end Autonomous Driving Projects?

5.1 E2E-AD Project Implementation Case: Tesla
5.1.1 Development History of Autopilot Hardware and Solutions
5.1.2 Evolution of Self-developed Autopilot Hardware and Computing Power Requirements of FSD v12.3
5.1.3 Autopilot: Multi-task E2E Learning Technical Solutions
5.1.4 E2E Team
5.1.5 Description of Most Key AI Jobs in Recruitment
5.1.6 E2E R&D Investment

5.2 E2E-AD Project Implementation Case: Wayve
5.2.1 Profile
5.2.2 Data Generation Cases of E2E
5.2.3 How to Build an E2E-AD System
5.2.4 Team layout

5.3 Team Building and Project Budget
5.3.1 Autonomous Driving Project: Comparison between Investment and Team Size
5.3.2 E2E-AD Project: Top-level System Design and Organizational Structure Design 
5.3.3 E2E-AD Project: Development Team Layout Budget and Competitiveness Construction
5.3.4 E2E-AD Project: Job Design and Description
5.3.5 Cases of End-to-end Autonomous Driving Team Building of Domestic OEMs

5.9 Automotive E2E Autonomous Driving System Design
5.4.1 E2E-AD Project Development Business Process
5.4.2 Project Business Process Reference (1)
5.4.3 Project Business Process Reference (2)

5.5 Cloud E2E Autonomous Driving System Design
5.5.1 E2E-AD Project Business Process Reference
5.5.2 E2E-AD Project Cloud Design (1)
5.5.3 E2E-AD Project Cloud Design (2)
 

48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号