End-to-end Autonomous Driving (E2E AD) Research Report, 2024
  • Apr.2024
  • Hard Copy
  • USD $2,700
  • Pages:200
  • Single User License
    (PDF Unprintable)       
  • USD $2,500
  • Code: GX012
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $2,900
      

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving

1. Status quo of end-to-end solutions in China
An end-to-end autonomous driving system refers to direct mapping from sensor data inputs (camera images, LiDAR, etc.) to control command outputs (steering, acceleration/deceleration, etc.). It first appeared in the ALVINN project in 1988. It uses cameras and laser rangefinders as input and a simple neural network to generate steering as output.

In early 2024, Tesla rolled out FSD V12.3, featuring an amazing intelligent driving level. The end-to-end autonomous driving solution garners widespread attention from OEMs and autonomous driving solution companies in China.?

Compared with conventional multi-module solutions, the end-to-end autonomous driving solution integrates perception, prediction and planning into a single model, simplifying the solution structure. It can simulate human drivers making driving decisions directly according to visual inputs, effectively cope with long tail scenarios of modular solutions and improve the training efficiency and performance of models.

端到端 1_副本.png

端到端 2_副本.png

端到端 3_副本.png

Li Auto's end-to-end solution
Li Auto believes that a complete end-to-end model should cover the whole process of perception, tracking, prediction, decision and planning, and it is the optimal solution to achieve L3 autonomous driving. In 2023, Li Auto pushed AD Max3.0, with overall framework reflecting the end-to-end concept but still a gap with a complete end-to-end solution. In 2024, Li Auto is expected to promote the system to become a complete end-to-end solution.?

Li Auto's autonomous driving framework is shown below, consisting of two systems:
Fast system: System 1, Li Auto’s existing end-to-end solution which is directly executed after perceiving the surroundings.
Slow system: System 2, a multimodal large language model that logically thinks and explores unknown environments to solve problems in unknown L4 scenarios.

端到端 4_副本.png

In the process of promoting the end-to-end solution, Li Auto plans to unify the planning/forecast model and the perception model, and accomplish the end-to-end Temporal Planner on the original basis to integrate parking with driving.

2. Data becomes the key to the implementation of end-to-end solutions.
The implementation of an end-to-end solution requires processes covering R&D team building, hardware facilities, data collection and processing, algorithm training and strategy customization, verification and evaluation, promotion and mass production. Some of the sore points in scenarios are as shown in the table:

端到端 5_副本.png

The integrated training in end-to-end autonomous driving solutions requires massive data, so one of the difficulties it faces lies in data collection and processing.
First of all, it needs a long time and may channels to collect data, including driving data and scenario data such as roads, weather and traffic conditions. In actual driving, the data within the driver's front view is relatively easy to collect, but the surrounding information is hard to say.
During data processing, it is necessary to design data extraction dimensions, extract effective features from massive video clips, make statistics of data distribution, etc. to support large-scale data training.

DeepRoute

As of March 2024, DeepRoute.ai's end-to-end autonomous driving solution has been designated by Great Wall Motor and involved in the cooperation with NVIDIA. It is expected to adapt to NVIDIA Thor in 2025. In the planning of DeepRoute.ai, the transition from the conventional solution to the "end-to-end" autonomous driving solution will go through sensor pre-fusion, HD map removal, and integration of perception, decision and control.

端到端 6_副本.png

GigaStudio
DriveDreamer, an autonomous driving model of GigaStudio, is capable of scenario generation, data generation, driving action prediction and so forth. In the scenario/data generation, it has two steps:
When involving single-frame structural conditions, guide DriveDreamer to generate driving scenario images, so that it can understand structural traffic constraints easily.
Extend its understanding to video generation. Using continuous traffic structure conditions, DriveDreamer outputs driving scene videos to further enhance its understanding of motion transformation.

端到端 7_副本.png

3. End-to-end solutions accelerate the application of embodied robots.
In addition to autonomous vehicles, embodied robots are another mainstream scenario of end-to-end solutions. From end-to-end autonomous driving to robots, it is necessary to build a more universal world model to adapt to more complex and diverse real application scenarios. The development framework of mainstream AGI (General Artificial Intelligence) is divided into two stages:
Stage 1: the understanding and generation of basic foundation models are unified, and further combined with embodied artificial intelligence (embodied AI) to form a unified world model;
Stage 2: capabilities of world model + complex task planning and control, and abstract concept induction gradually evolve into the era of the interactive AGI 1.0.

In the landing process of the world model, the construction of an end-to-end VLA (Vision-Language-Action) autonomous system has become a crucial link. VLA, as the basic foundation model of embodied AI, can seamlessly link 3D perception, reasoning and action to form a generative world model, which is built on the 3D-based large language model (LLM) and introduces a set of interactive markers to interact with the environment.

端到端 8_副本.png

As of April 2024, some manufacturers of humanoid robots adopting end-to-end solutions are as follows:

端到端 9_副本.png

For example, Udeer·AI's Large Physical Language Model (LPLM) is an end-to-end embodied AI solution that uses a self-labeling mechanism to improve the learning efficiency and quality of the model from unlabeled data, thereby deepening the understanding of the world and enhancing the robot's generalization capabilities and environmental adaptability in cross-modal, cross-scene, and cross-industry scenarios.

端到端 10_副本.png

LPLM abstracts the physical world and ensures that this kind of information is aligned with the abstract level of features in LLM. It explicitly models each entity in the physical world as a token, and encodes geometric, semantic, kinematic and intentional information.

In addition, LPLM adds 3D grounding to the encoding of natural language instructions, improving the accuracy of natural language to some extent. Its decoder can learn by constantly predicting the future, thus strengthening the ability of the model to learn from massive unlabeled data.

1. Foundation of End-to-end Autonomous Driving Technology

1.1 Terminology and Concept of End-to-end Autonomous Driving
1.1.1 Terminology Explanation of End-to-end Autonomous Driving
1.1.2 Development History of End-to-end Autonomous Driving (1)
1.1.3 Development History of End-to-end Autonomous Driving (2)

1.2 Status Quo of End-to-end Autonomous Driving
1.2.1 Development History of Autonomous Driving Algorithm Industrialization
1.2.2 Status Quo of E2E-AD Model Mass Production
1.2.3 Progress and Challenges of E2E-AD

1.3 Comparison among End-to-end E2E-AD Motion Planning Models
1.3.1 End-to-end E2E-AD Trajectory Planning of Autonomous Driving: Comparison among Several Classical Models in Industry and Academia
1.3.2 Tesla: Perception and Decision-making Full Stack Integrated Model
1.3.3 Model 2
1.3.4 Model 3
1.3.5 Model 4
1.3.6 Model 5

1.4 Comparison among End-to-end E2E-AD Models
1.4.1 Horizon Robotics VADv2: An End-to-end Driving Model Based on Probability Programming 
1.4.2 Model 2
1.4.3 Model 3
1.4.4 Model 4
1.4.5 Model 5

1.5 Typical Cases of End-to-end Autonomous Driving E2E-AD Models
1.5.1 Case 1 - SenseTime’s E2E-AD Model: UniAD
1.5.2 Case 2
1.5.3 Case 3

1.6 Embodied Language Models (ELMs)
1.6.1 ELMs accelerate the landing of End-to-end Solutions 
1.6.2 Foundation Model Application scenarios of ELMs (1)
1.6.2 Foundation Model Application scenarios of ELMs (2)
1.6.2 Foundation Model Application scenarios of ELMs (3)
1.6.2 Foundation Model Application scenarios of ELMs (4)
1.6.2 Foundation Model Application scenarios of ELMs (5)
1.6.2 Foundation Model Application scenarios of ELMs (6)
1.6.2 Foundation Model Application scenarios of ELMs (7)
1.6.3 Limitations and Positive Effects of ELMs

2 Technology Roadmap and Development Trends of End-to-end Autonomous Driving

2.1 Scenario Difficulties
2.1.1 Scenario Difficulties and Solutions: Computing Power Supply/Data Acquisition
2.1.2 Scenario Difficulties and Solutions: Team Building/Interpretability

2.2 Development Trends
2.2.1 Trend 1
2.2.2 Trend 2
2.2.3 Trend 3
2.2.4 Trend 4
2.2.5 Trend 5: Universal World Model: Three Paradigms and System Construction of AGI
2.2.6 Trend 6
2.2.7 Trend 7

3 Application of End-to-end Autonomous Driving in the Field of Passenger Cars

3.1 Dynamics of Domestic End-to-end Autonomous Driving Companies
3.1.1 Comparison among End-to-End Foundation Model Technologies of  OEMs
3.1.2 Comparison among End-to-End Foundation Model Technologies of?Major?Suppliers 
3.1.3 Patents on End-to-End Autonomous Driving of Intelligent Vehicles

3.2 DeepRoute.ai
3.2.1 Implementation Progress of End-to-end Solutions
3.2.2 Difference between End-to-end Solutions and Traditional Solutions

3.3 Haomo.AI
3.3.1 End-to-end Solution Construction Strategy
3.3.2 Reinforcement Learning/Imitation Learning Techniques
3.3.3 Training Methods of End-to-end Solutions

3.4 PhiGent Robotics
3.4.1 Interactive Scenario Diagrams for Agents
3.4.2 GraphAD Construction Path
3.4.3 GraphAD Test Results

3.5 Enterprise 5
3.6 Enterprise 6
3.7 Enterprise 7
3.8 Enterprise 8
3.9 Enterprise 9
3.10 Enterprise 10
3.11 Enterprise 11
3.12 NIO
3.13 Xpeng
3.14 Li Auto
3.14.1 Li Auto's End-to-end Solution
3.14.2 Li Auto's Current Autonomous Driving Solution
3.14.3 Li Auto's DriveVLM  
3.15 Enterprise 15
3.16 Enterprise 16
3.17 XX University
3.18 XX University

4 Application of End-to-end Autonomous Driving in the Field of Robots

4.1 Progress of End-to-end Technology for Humanoid Robots
4.1.1 Humanoid Robots Are the Carrier of Embodied Artificial Intelligence
4.1.2 NVIDIA GTC 2024: Several Core Humanoid Robot Companies Participating in the Conference
4.1.3 Global Demand for Humanoid Robots
4.1.4 Comparison among Global Humanoid Robot Features

4.2 Humanoid Robot: Figure 01
4.2.1 Features of Figure 01
4.2.2 Working Principle of Figure 01
4.2.3 Functions of Figure 01
4.2.4 Development of Figure 01

4.3 Zero Demonstration Autonomous Robot Open Source Model: O Model
4.3.1 Implementation Principle of O Model

4.4 Nvidia's Project GR00T 
4.4.1 Project GR00T - Robot Foundation Model Development Platform  
4.4.2 Project GR00T - Robot Learning and Scaling Development Workflow
4.4.3 Project GR00T - Robot Isaac Simulation Platform 
4.4.4 Project GR00T - Omniverse Replicator Platform

4.5 Robot Case 5

4.6 Robot Case 6

4.7 Robot Case 7

4.8 Robot Case 8

4.9 Robot Case 9

4.10 Status Quo and Future of Foundation Models+Robots
4.10.1 Application of Foundation Models in the Robot Field
4.10.2 End-to-end Application and Future Prospect of Foundation Models in the Robot Field
4.10.3 Future Trends of Embodied Artificial Intelligence

5 How to Implement End-to-end Autonomous Driving Projects?

5.1 E2E-AD Project Implementation Case: Tesla
5.1.1 Development History of Autopilot Hardware and Solutions
5.1.2 Evolution of Self-developed Autopilot Hardware and Computing Power Requirements of FSD v12.3
5.1.3 Autopilot: Multi-task E2E Learning Technical Solutions
5.1.4 E2E Team
5.1.5 Description of Most Key AI Jobs in Recruitment
5.1.6 E2E R&D Investment

5.2 E2E-AD Project Implementation Case: Wayve
5.2.1 Profile
5.2.2 Data Generation Cases of E2E
5.2.3 How to Build an E2E-AD System
5.2.4 Team layout

5.3 Team Building and Project Budget
5.3.1 Autonomous Driving Project: Comparison between Investment and Team Size
5.3.2 E2E-AD Project: Top-level System Design and Organizational Structure Design 
5.3.3 E2E-AD Project: Development Team Layout Budget and Competitiveness Construction
5.3.4 E2E-AD Project: Job Design and Description
5.3.5 Cases of End-to-end Autonomous Driving Team Building of Domestic OEMs

5.9 Automotive E2E Autonomous Driving System Design
5.4.1 E2E-AD Project Development Business Process
5.4.2 Project Business Process Reference (1)
5.4.3 Project Business Process Reference (2)

5.5 Cloud E2E Autonomous Driving System Design
5.5.1 E2E-AD Project Business Process Reference
5.5.2 E2E-AD Project Cloud Design (1)
5.5.3 E2E-AD Project Cloud Design (2)
 

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

New Energy Vehicle Electric Drive and Power Domain industry Report, 2024

OEMs lead the integrated development of "3 + 3 + X platform", and the self-production rate continues to increase The electric drive system is developing around technical directions of high integratio...

Global and China Automotive Smart Glass Research Report, 2024

Research on automotive smart glass: How does glass intelligence evolve  ResearchInChina has released the Automotive Smart Glass Research Report 2024. The report details the latest advances in di...

Passenger Car Brake-by-Wire and AEB Market Research Report, 2024

1. EHB penetration rate exceeded 40% in 2024H1 and is expected to overshoot 50% within the yearIn 2024H1, the installations of electro-hydraulic brake (EHB) approached 4 million units, a year-on-year ...

Autonomous Driving Data Closed Loop Research Report, 2024

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop? As software 2.0 and end-to-end technology are introduced into a...

Research Report on Intelligent Vehicle E/E Architectures (EEA) and Their Impact on Supply Chain in 2024

E/E Architecture (EEA) research: Advanced EEAs have become a cost-reducing tool and brought about deep reconstruction of the supply chain The central/quasi-central + zonal architecture has become a w...

Automotive Digital Power Supply and Chip Industry Report, 2024

Research on automotive digital power supply: looking at the digital evolution of automotive power supply from the power supply side, power distribution side, and power consumption side This report fo...

Automotive Software Business Models and Suppliers’ Layout Research Report, 2024

Software business model research: from "custom development" to "IP/platformization", software enters the cost reduction cycle According to the vehicle software system architecture, this report classi...

Passenger Car Intelligent Steering Industry Research Report, 2024

Intelligent Steering Research: Steer-by-wire is expected to land on independent brand models in 2025 The Passenger Car Intelligent Steering Industry Research Report, 2024 released by ResearchInChina ...

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024 highlights the following:Passenger car wireless charging (principle, standards, and Qi2.0 protocol);Passenger car mobile phone ...

Automotive Smart Exteriors Research Report, 2024

Research on automotive smart exteriors: in the trend towards electrification and intelligence, which exteriors will be replaced by intelligence The Automotive Smart Exteriors Research Report, 2024 r...

Automotive Fragrance and Air Conditioning System Research Report, 2024

Research on automotive fragrance/air purification: With surging installations, automotive olfactory interaction is being linked with more scenarios. As users require higher quality of personalized, i...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号