It is in this report that over a dozen of millimeter-wave radar types are studied on design, supply chain and cost, including Continental’s ARS4A, ARS4B, ARS408 and ARS410, Bosch’s LRR4, FR5CP, MRR1PLUS and MRR Rear, Aptiv’s RACam and SRR3, Veoneer's MRRV1, Valeo's MBHL2, ZF's AC1000, Denso's HYQDNWR010, etc. Some of them are dismantled and illustrated in details.
Automotive MMW radar is mainly comprised of a planar printed antenna, RF IC (generally called MMIC) and DSP-contained MCU. The fast Fourier transformation (FFT) of radar is a special operation, mostly fulfilled by separate external FPGA or DSP in the past. Freescale built DSP into MCU for the first time, improving the integration observably. Also, there are a few external DSP designs for the time being. Auxiliary IC encompasses power management, VCO, low-noise amplifier LNA, CAN transceiver, among others. MCU is often offered by NXP's 577x series or 567x series.
MMIC, though with a small share in costs, is crucial to both total cost and performance, really making a big difference in costs between radars. For example, the MR2001 radar chipset consists of two transmitters and three receivers. A simple mid-range radar only needs a chipset, but a long-range radar with higher resolution demands more chipsets, like ARS 4A with one more transmitter and three more receivers.
The RF board employs an asymmetric structure based on a hybrid PTFE / FR4 substrate and is provided with a planar antenna which is hard to produce. RF board is costly since 80 percent of substrate materials are now monopolized by Rogers RO3003 ED G2 (Japanese companies use Panasonic R5515).
For special radar structures, the baseband board and the RF board are as usual separated by an aluminum-zinc alloy die-casting board whose edges are connected to the radar plastic housing via shockproof rubber in order to meet the waterproof and shockproof requirements of automotive standards as well as to avoid interference to the RF board.
The plastic cover on the antenna of automotive radar takes into account the microwave transmission effect. Vendors attach great importance to the thickness, material and shape of the plastic cover, which is part of the radar design. Generally speaking, they prefer materials with ultra-low dielectric coefficient and surprisingly low losses as well as resistance to dust, water and vibration to cater to automotive grade. Bosch used PEI in the early days, and later turned to PBT-GF30 provided by BASF, while Continental has adhered to PBT-GF30 invariably. Valeo and Aptiv replace expensive PBT with SPS for 24GHz radar, and they are studying how to apply it to 77GHz radar.
Chinese millimeter-wave radar vendors pay much more than foreign counterparts because of low chip procurement. The price major foreign vendors pay for each of MMIC, MCU and RF PCB is equivalent to 1/3 to 1/4 of that by Chinese ones, and that for analog products such as power management is 1/4 to 1/5 of Chinese peers’. However, the Chinese millimeter-wave radar cost will be cut substantially once the procurement goes up.
The threshold for access to MMIC is low, and the Chinese MMIC vendors embrace a rosy prospect. Foreign chips, especially made by Infineon, are expensive and unfriendly for Chinese vendors who have to select NXP. In this case, MMIC made in China is very popular.
The China-made forward 77GHz radar is led by Shenyang Cheng-Tech and Huayu Automotive Systems, and the 24GHz radar is largely offered by Wuhu Sensortech Intelligent Technology (WHST) and it has been heavily shipped to Hongqi cars.
China Automotive Fragrance and Air Purification Systems Research Report, 2023
Automotive fragrance and air purification systems: together to create a comfortable and healthy cockpitTechnology trend: intelligence of fragrance system and integration of air purification system
In...
Global and China Solid State Battery Industry Report, 2023
Solid state battery research: semi-solid state battery has come out, is all-solid state battery still far away?In recent years, the new energy vehicle market has been booming, and the penetration of n...
Global and China Passenger Car T-Box Market Report, 2023
T-Box industry research: the market will be worth RMB10 billion and the integration trend is increasingly clear.
ResearchInChina released "Global and China Passenger Car T-Box Market Report, 2023", w...
Analysis Report on Auto Shanghai 2023
Analysis on 75 Trends at Auto Shanghai 2023: Unprecedented Prosperity of Intelligent Cockpits and Intelligent Driving Ecology
After analyzing the intelligent innovation trends at the Auto Shanghai 20...
Chinese Emerging Carmakers’ Telematics System and Entertainment Ecosystem Research Report, 2022-2023
Telematics service research (III): emerging carmakers work on UI design, interaction, and entertainment ecosystem to improve user cockpit experience.
ResearchInChina released Chinese Emerging Carmake...
China Passenger Car Cockpit-Parking Industry Report, 2023
Cockpit-parking integration research: cockpit-parking vs. driving-parking, which one is the optimal solution for cockpit-driving integration?Cockpit-parking vs. driving-parking, which one is the optim...
Automotive Sensor Chip Industry Report, 2023
Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution.
At the Auto Shanghai 2023, "more weight on percepti...
Automotive Electronics OEM/ODM/EMS Industry Report, 2023
Automotive electronics OEM/ODM/EMS research: amid the disruption in the division of labor mode in the supply chain, which auto parts will be covered by OEM/ODM/EMS mode? Consumer electronic manu...
China Automotive Smart Glass Research Report, 2023
Smart glass research: the automotive smart dimming canopy market valued at RMB127 million in 2022 has a promising future.Smart dimming glass is a new type of special optoelectronic glass formed by com...
Automotive Ultrasonic Radar and OEM Parking Roadmap Development Research Report, 2023
Automotive Ultrasonic Radar Research: as a single vehicle is expected to carry 7 units in 2025, ultrasonic radars will evolve to the second generation.
As a single vehicle is expec...
Autonomous Driving SoC Research Report, 2023
Research on autonomous driving SoC: driving-parking integration boosts the industry, and computing in memory (CIM) and chiplet bring technological disruption.
“Autonomous Driving SoC Research ...
China ADAS Redundant System Strategy Research Report, 2023
Redundant System Research: The Last Line of Safety for Intelligent VehiclesRedundant design refers to a technology adding more than one set of functional channels, components or parts that enable the ...
Intelligent Steering Key Components Report, 2023
Research on intelligent steering key components: four development trends of intelligent steering
The automotive chassis consists of four major systems: transmission system, steering system, driving ...
Automotive Digital Instrument Cluster Operating System Report, 2023
Digital Instrument Cluster Operating System Report: QNX commanded 71% of the Chinese intelligent vehicle cluster operating system market.
Amid the trend for the integration of digital cluster and cen...
800V High Voltage Platform Research Report, 2023
How to realize the commercialization of 800V will play a crucial part in the strategy of OEMs.
As new energy vehicles and battery technology boom, charging and battery swapping in the new energy vehi...
Automotive Intelligent Cockpit Platform Research Report, 2023
Intelligent cockpit platform research: the boundaries between vehicles and PCs are blurring, and there are several feasible paths for cockpit platforms.
Automotive Intelligent Cockpit Platform Resea...
Global and China Automotive Wireless Communication Module Industry Report,2023
Vehicle communication module research: 5G R16+C-V2X module, smart SiP module and other new products spring up.
In 2022, 4G modules swept 84.3% of the vehicle communication module market....
Intelligent Vehicle Cockpit-Driving Integration Research Report, 2023
Cockpit-Driving Integration Research: many companies are making layout and may implement it during 2024-2025.
1. What is the real cockpit-driving integration?
At present, automotive electroni...