Automotive Radar Dismantling and Cost Analysis, 2019-2020
  • May 2020
  • Hard Copy
  • USD $3,200
  • Pages:70
  • Single User License
    (PDF Unprintable)       
  • USD $3,000
  • Code: ZYW242
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,500
  • Hard Copy + Single User License
  • USD $3,400
      

It is in this report that over a dozen of millimeter-wave radar types are studied on design, supply chain and cost, including Continental’s ARS4A, ARS4B, ARS408 and ARS410, Bosch’s LRR4, FR5CP, MRR1PLUS and MRR Rear, Aptiv’s RACam and SRR3, Veoneer's MRRV1, Valeo's MBHL2, ZF's AC1000, Denso's HYQDNWR010, etc. Some of them are dismantled and illustrated in details.

Automotive MMW radar is mainly comprised of a planar printed antenna, RF IC (generally called MMIC) and DSP-contained MCU. The fast Fourier transformation (FFT) of radar is a special operation, mostly fulfilled by separate external FPGA or DSP in the past. Freescale built DSP into MCU for the first time, improving the integration observably. Also, there are a few external DSP designs for the time being. Auxiliary IC encompasses power management, VCO, low-noise amplifier LNA, CAN transceiver, among others. MCU is often offered by NXP's 577x series or 567x series.

MMIC, though with a small share in costs, is crucial to both total cost and performance, really making a big difference in costs between radars. For example, the MR2001 radar chipset consists of two transmitters and three receivers. A simple mid-range radar only needs a chipset, but a long-range radar with higher resolution demands more chipsets, like ARS 4A with one more transmitter and three more receivers.

The RF board employs an asymmetric structure based on a hybrid PTFE / FR4 substrate and is provided with a planar antenna which is hard to produce. RF board is costly since 80 percent of substrate materials are now monopolized by Rogers RO3003 ED G2 (Japanese companies use Panasonic R5515).

For special radar structures, the baseband board and the RF board are as usual separated by an aluminum-zinc alloy die-casting board whose edges are connected to the radar plastic housing via shockproof rubber in order to meet the waterproof and shockproof requirements of automotive standards as well as to avoid interference to the RF board.

The plastic cover on the antenna of automotive radar takes into account the microwave transmission effect. Vendors attach great importance to the thickness, material and shape of the plastic cover, which is part of the radar design. Generally speaking, they prefer materials with ultra-low dielectric coefficient and surprisingly low losses as well as resistance to dust, water and vibration to cater to automotive grade. Bosch used PEI in the early days, and later turned to PBT-GF30 provided by BASF, while Continental has adhered to PBT-GF30 invariably. Valeo and Aptiv replace expensive PBT with SPS for 24GHz radar, and they are studying how to apply it to 77GHz radar.

Chinese millimeter-wave radar vendors pay much more than foreign counterparts because of low chip procurement. The price major foreign vendors pay for each of MMIC, MCU and RF PCB is equivalent to 1/3 to 1/4 of that by Chinese ones, and that for analog products such as power management is 1/4 to 1/5 of Chinese peers’. However, the Chinese millimeter-wave radar cost will be cut substantially once the procurement goes up.

The threshold for access to MMIC is low, and the Chinese MMIC vendors embrace a rosy prospect. Foreign chips, especially made by Infineon, are expensive and unfriendly for Chinese vendors who have to select NXP. In this case, MMIC made in China is very popular.

The China-made forward 77GHz radar is led by Shenyang Cheng-Tech and Huayu Automotive Systems, and the 24GHz radar is largely offered by Wuhu Sensortech Intelligent Technology (WHST) and it has been heavily shipped to Hongqi cars.

1 Trends of Automotive Millimeter-wave Radar Technology
1.1 Automotive Radar Industry Chain
1.2 Development Course of Automotive Radar
1.3 Development Course of Automotive Radar
1.4 Application Trends of Radar in L3 / L4 Era
1.5 Bandwidth and Frequency of Radar
1.6 Typical FMCW Radar Theory
1.7 Typical Automotive Radar Framework
1.8 Key Component Supply Chain of Automotive Radar
1.9 Trends of Automotive Radar RF Transceiver Chip Industry
1.10 Mainstream Radar Designs and Core Component Suppliers

2 Automotive Millimeter-wave Radar Cost
2.1 Cost Analysis of Automotive Radar
2.2 Cost Structure of Mainstream Radars

3 Dismantling of Tesla ARS-4B Radar
3.1 Introduction
3.2 Parameters
3.3 Cost Structure
3.4 Baseband Board
3.5 Back of Baseband Board
3.6 Front of RF Board: the shield is not disassembled
3.7 Features of Flat Printed Antenna
3.8 Removal of Shield
3.9 Empty Board with RF IC Removed
3.10 Back of RF Board

4 Dismantling of Mercedes-Benz C/E-Class Radar ARS-410
4.1 Overview
4.2 Front and Back of RF Board
4.3 Front and Back of Baseband Board
4.4 MR2001 Framework
4.5 MR2001T Framework
4.6 MPC577xK Framework

5 Dismantling of Bosch MRR Radar Family
5.1 Front and Back of RF Board
5.2 Parameters of Bosch MRR Radar
5.3 Cost Analysis of Forward Radar
5.4 Front and Back of RF Board
5.5 Front and Back of Forward Radar RF Board
5.6 Front and Back of Forward Radar Power Board
5.7 Structural Parts of Forward Radar

6 Dismantling of Valeo MBHL2 Radar
6.1 Overview
6.2 24GHz Radar Customers
6.3 MBHL2 Radar Cost
6.4 Front of MBHL2 Baseband Board
6.5 Back of MBHL2 Baseband Board
6.6 Front of MBHL2 RF Board
6.7 Back of MBHL2 RF Board

7 Continental SRR3-B 24GHz Radar
7.1 Overview
7.2 Front and Back of SRR3-B Baseband Board
7.3 Front and Back of SRR3-B RF Board
7.4 Front and Back of AC1000 RF Board
7.5 Front and Back of AC1000 Baseband Board
7.6 AC1000 Housing

8 Dismantling of Denso HYQDNMWR010 Radar
8.1 Overview
8.2 Front and Back of RF Board
8.3 Front and Back of Baseband Board
8.4 Cost Analysis
 

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability Reasoning capabilities drive up the performance of foundation models. Since the second ha...

China's New Passenger Cars and Suppliers' Characteristics Research Report, 2024-2025

Trends of new cars and suppliers in 2024-2025: New in-vehicle displays are installed, promising trend of AI and cars is coming  ResearchInChina releases the China's New Passenger Cars and Suppli...

Global and China Skateboard Chassis Industry Report, 2024-2025

Skateboard chassis research: already used in 8 production models, and larger-scale production expected beyond 2025 Global and China Skateboard Chassis Industry Report, 2024-2025 released by ResearchI...

Two-wheeler Intelligence and Industry Chain Research Report, 2024-2025

Research on the two-wheeler intelligence: OEMs flock to enter the market, and the two-wheeler intelligence continues to improve This report focuses on the upgrade of two-wheeler intelligence, analyz...

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号