Software-defined vehicle Research Report 2021: Architecture Trends and Industry Panorama
  • Aug.2021
  • Hard Copy
  • USD $4,700
  • Pages:405
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: YS028
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900

The overall architecture of software-defined vehicles can be divided into four layers:
(1) The hardware platform and heterogeneous distributed hardware architecture;
(2) The system software layer, including virtual machines, system kernels, POSIX, Autosar, etc.;
(3) The application middleware and development framework, including functional software, SOA, etc.;
(4) The application software layer, including smart cockpit HMI, ADAS/AD algorithms, connectivity algorithms, cloud platforms, etc.

Overall Architecture of Software-defined Vehicles
SDV 1_副本.png 
Source: ResearchInChina

The business model of smart car software is in the form of "IP + solutions + services". Tier 1 software suppliers charge in following modes: (1) One-time R&D expenses and software packages, such as ADAS/AD algorithm packages; (2) Software licensing fees per car, royalties (by a certain proportion of car shipments and unit price); (3) One-time R&D expenses and license packages per car.

Take the software IP licensing fees as an example. Regardless of the highly complex AD software, we estimate that the software IP licensing fees for a single car is at least RMB2,000-3,000. As the functions of smart cars become more complex, the software IP licensing fees per car will continue to rise.

Estimated Software IP Licensing Fees per Car by Automotive Software
 SDV 2_副本.png
Source: ResearchInChina

At the same time, OEMs are also vigorously expanding their internal software R&D teams to reduce the cost of software outsourcing. In the next step, OEMs‘ software R&D will still focus on software that can directly create value for consumers, such as cockpit HMI, autonomous driving, etc. Of course, OEMs can also cooperate with independent software vendors in R&D through the decoupling of software and hardware, like BMW and ArcherMind Technology team up, and ThunderSoft and Human Horizons collaborate. However, for general software (such as surround view splicing, voice, DMS) and common platform-based software (such as OS kernels, virtual machines, HD maps, cloud platforms, etc.), OEMs still give priority to outsourcing.

In general, as software becomes more and more complex, the life cycle value (ASP) of software for a single car may be as high as tens of thousands of yuan, which makes software a main part of the vehicle BOM cost.

With the continuous evolution of software-defined vehicles, the business model of the entire automotive industry has changed accordingly, from new car manufacturing and marketing model which lasts for a long time to a larger-scale software × ownership model. Automakers will charge customers for software license and OTA updates to complete the closed-loop business model.

For example, Tesla has boosted the price of its FSD (Full Self-Driving) Beta launched at the end of 2020 by US$2,000 to US$10,000, and it will further raise the price of the package for L3/L4 autonomous driving to US$14,000. Tesla is trying to offer customers a way to subscribe and pay a monthly fee instead of US$10,000 up-front for their premium driver assistance features in order to expand the potential subscriber base.

On July 16, 2021, Tesla started offering a monthly subscription for its FSD package for US$199 per month in the United States. Tesla owners can cancel their monthly FSD subscription at any time. Customers who previously bought Tesla’s Enhanced Autopilot package (EAP) can subscribe to FSD for a lower price of US$99 a month but may require the HW3.0 upgrade.  In other words, only Teslas that have the FSD computer hardware 3.0 (HW3) or above plus either Basic or Enhanced Autopilot configurations are eligible to subscribe to FSD; other owners can purchase a hardware upgrade for US$1,500 to make their vehicles FSD-ready.
Once Tesla fulfills the transformation of its business model, all existing Tesla owners may become subscribers of the FSD package. Assuming 10 million Tesla owners subscribe to the FSD package with a monthly price of US$100, a subscription fee of US$12 billion will be incurred each year and Tesla’s software gross margin will be as high as 70-80%. The software revenue from existing car owners is expected to be very stable and lucrative, posing a solid moat for Tesla.

A Trilogy of Software-defined Vehicle Transformation of OEMs

In the short term, the system kernel and middle layer are the key R&D directions. In the long run, SOA will bring about changes in business models. To complete the software-defined vehicle transformation, OEMs must at least achieve:

1. Vehicle EEA upgrade. The hardware architecture develops from distributed ECU to centralized domains, and further upgrades to centralized + regional controllers. As for the communication architecture, the automotive network backbone is upgraded from LIN/CAN bus to Ethernet;

2. Linux, QNX and other RTOS only provide kernels. On this basis, OEMs realize hardware abstraction, form a middle layer operating system that supports application development, define developer interaction logic, and build application layers, namely the so-called self-developed operating systems of OEMs, similar to Tesla.OS, VW.OS, Daimler MB.OS, BMW-OS and Toyota Arene. At the same time, more and more OEMs have followed suit, such as SAIC Z-One SOA, Lixiang Li-OS and Volvo Cars.OS. The ultimate goal of OEMs is to open up vehicle programming to all enterprises by simplifying the development of vehicle software and increasing the frequency of updates, so as to master the ecological resources of developers;

3. With further making use of the huge number of users to build a developer ecosystem, the profit engine of automakers has transferred from "hardware manufacturing" to "software development". For example, Tesla continues to boost the price of FSD software while continuously reducing the price of vehicle hardware in order to promote the rapid development of the automobile company dominated by software revenue.

In the short term, most OEMs are still in the stage of upgrading their hardware architecture. At present, only Tesla and Volkswagen have completed the development, construction and large-scale applications of customized OS kernels. The decoupling of automotive hardware and software is also in the early stages of development. Now, OEMs have focused on basic software (system kernels, AP Autosar, middle layers, etc.).

From a long-term perspective, SOA (Service-Oriented Architecture) will reconstruct the automotive ecology. The automotive industry is likely to replicate the software model of "basic hardware, middle-level operating systems and upper-level applications" for PCs and smartphones. Meanwhile, smart car middleware giants will emerge. Upper-level APP developers need not pay attention to the underlying hardware architecture, but should focus on application development instead.

By building operating systems and SOA platforms by themselves or with suppliers, automakers have introduced a large number of algorithm suppliers, ecological partners, etc. to form a developer ecosystem. In the future, automakers can provide users with software services covering the full life cycle. Under this background, OEMs have laid out SOA software architecture development. In the next 2-3 years, SOA mass production will reach its peak, and consumers will enjoy richer smart driving experience.

SOA Software Mass Production Deployment of Some Automakers
SDV 3_副本.png  Source: ResearchInChina

The automotive SOA software platform is similar to Apple iOS and Google Android in the smart phone field. It is not only a generalized software architecture, but also an ecological platform for developers. In the smart phone field, Apple iOS and Google Android basically monopolize developer resources, each of them holds more than 20 million developer resources worldwide. Likewise, the automotive SOA software platform may gradually head toward an oligopolistic market.

At the same time, the powerful ecosystem of Apple and Android developers has become one of the fatal technologies in the context of the Sino-US trade war. Especially after the US government placed Huawei on its Entity List, Google stopped offering Google Mobile Services to Huawei, which affected the operation of Huawei's mobile phones. In this case, Huawei had to launch HMS services and HarmonyOS. The underlying automotive software platform will also threaten the safety of the industrial strategy, and it has become a national strategy. It is urgent to build a standardized platform for automotive basic software.

Under the guidance of the Ministry of Industry and Information Technology of China, Neusoft Reach and China Association of Automobile Manufacturers have jointly planned and initiated China Automotive Basic Software Ecological Committee (AUTOSEMO). With more than 20 member units, AUTOSEMO will share experience and innovation, build open standardized software architectures, interface specifications and application frameworks, develop China's automotive basic software industry ecosystem with independent intellectual property rights, as well as promote China's automotive industry to accelerate the intelligent transformation.

On July 22, 2020, AUTOSEMO was established in Shanghai, with founding members including FAW, SAIC, GAC, NIO, Geely, Great Wall, Changan, Beiqi Foton, Dongfeng, FAW Jiefang, Xpeng, Neusoft Reach, Jingwei Hirain, NASN, VMAX, Horizon Robotics, Zhito, Wanxiang Qianchao, REFIRE and China Automotive Innovation. The first rotating chairman was assumed by Neusoft Reach.

The mission of AUTOSEMO is to forge basic software architecture standards and interface specifications dominated by local enterprises with independent intellectual property rights, share knowledge and achievements, as well as establish an industrial ecology, in response to the development needs of intelligent connected vehicles and autonomous driving technology in the future. Harboring the concept of independence, development, and innovation, it has created an automotive software ecosystem communication platform for the industry. It released the first China Automotive Basic Software Development White Paper 1.0 in November 2020, and the first Automotive SOA Software Architecture Technical Specifications 1.0 in June 2021 to accelerate the development of China’s automobile industry towards intelligence.

For smart cars with new EEA, AP AUTOSAR and middleware OS will be the focus of many Tier1 suppliers

Automakers are committed to defining more unified middleware communications and services to reduce development costs and system complexity. Operating software (OS) and middleware are the underlying software components that promote the separation of software and hardware. Even if automakers choose to develop their own operating systems, they will also rely on standard middleware products provided by suppliers. In particular, the architecture of the basic software platform is extremely important, because it can greatly improve the development efficiency of software for the application layer.

Automotive electronic software standards mainly include AUTOSAR, OSEK/VDX, etc. Among them, AUTOSAR has been developing for more than ten years, and has formed a complex technical system and extensive development ecology, as the mainstream of vehicle control operating systems.
AUTOSAR includes Classic and Adaptive platforms, designed for safety control and autonomous driving respectively. The Classic AUTOSAR platform, based on the OSEK/VDX standard, defines the technical specifications of vehicle control operating systems. With an operating system based on the POSIX standard, the Adaptive AUTOSAR platform can provide standardized platform interfaces and application services for operating systems that support the POSIX standard and diverse applications.

At present, the world-renowned AUTOSAR solution vendors include ETAS (Bosch), EB (Continental), Mentor Graphics (Siemens), Wind River (TPG Capital), and Vector, KPIT (a US-based company began in India as a joint venture) and so on.

In China, overseas suppliers, including EB, ETAS, VECTOR, etc., dominate the development tool chain and basic software under the Classic AUTOSAR standard, followed by domestic suppliers like Neusoft Reach, Huawei, Jingwei Hirain, etc. In terms of Adaptive AUTOSAR, suppliers are still in their infancy. Continental EB cooperates with Volkswagen to apply AP AUTOSAR and SOA platforms to ID series battery-electric vehicles of the Volkswagen MEB platform.

Previously, China’s automotive basic software architecture standards and industrial ecology were relatively backward. Following the trend of automotive intelligent transformation and upgrading, domestic vendors have focused on AP AUTOSAR and launched corresponding middleware and tool chain products to seize market opportunities.

Middleware Products of Some Suppliers

SDV 4_副本.png
Source: ResearchInChina

In November 2020, Neusoft Reach fully upgraded NeuSAR, an AUTOSAR-based system platform developed by itself for next-generation automotive communication and computing architectures, to the version 3.0, featuring ASIL-D functional safety, information security function expansion, high-performance SOA protocol stacks, virtual verification solutions, full support for SOA, application dynamic deployment, vehicle-cloud collaboration solutions and the like.

Neusoft Reach’s basic software product NeuSAR builds a horizontal software platform that can realize effective decoupling of software and hardware. It converts the core functions and algorithms of Neusoft Reach’s products into SOA services and provides them to application developers through standardized interfaces so as to support flexible application development modes.

In addition, the vehicle-cloud integrated system built by Neusoft Reach connects the in-vehicle SOA services with the cloud through the vehicle-cloud collaboration middleware, and combines the cloud service platform with big data and CP/SP aggregation capabilities to enable the intelligent application scenarios of vehicle-cloud collaboration vertically. 

Neusoft Reach's Software Architecture for SDV
SDV 5_副本.png  Source: Neusoft Reach

NeuSAR, developed by Neusoft Reach independently, is compatible with the latest version of the AUTOSAR standard. It not only supports traditional ECU development, but also provides a wealth of basic software, middleware and development tools for software development based on domain controllers and new EEA. NeuSAR is widely used in domain control systems such as autonomous driving, intelligent cockpits, chassis power, and body control under the next-generation architecture.

Strategies of OEMs, traditional Tier1 suppliers, and software vendors to cope with the trend of SOA and layered decoupling

Under the SOA software framework, OEMs, Tier1 suppliers, and other authorized developers will step in the application software development ecology.

There are three modes for OEMs to transform toward software:

1. While expanding the internal R&D teams, OEMs establish strategic alliances with software companies. OEMs promote the construction of software ecology, while the Tier1 software suppliers are responsible for execution; for example, GAC R&D Center, Neusoft Reach, ThunderSoft, etc. have erected a joint innovation center;

2. OEMs set up software subsidiaries to lay out full stack technology, gradually conduct independent R&D of software, algorithms, chips and other full technology stacks, bypass the traditional Tier1 suppliers to a certain extent, and co-develop subsystems with the former Tier2 software suppliers; CARIAD (Car.Software), a subsidiary of Volkswagen, SAIC Z-One, and Changan Auto Software Technology Co., Ltd. are the examples herein;

3. OEMs erect software R&D divisions to directly cooperate with core technology vendors by all ways like investment so as to be as independent as possible.

They mainly boast in-house R&D capabilities in one or more fields with strategic differences, and outsource some common software. For example, start-ups NIO, Xpeng, etc., which are smaller and more flexible and need not be comprehensive, focus on the development of core application software for smart cockpits and autonomous driving and have formed their own big R&D teams.

In the past automotive supply chain, powerful Tier1 suppliers generally provided software and hardware integrated "black boxes", so it is extremely difficult to decouple software from hardware. However, Tesla has broken through the business model of Tier1 suppliers. In the future, automotive electronics and auto parts will be tagged "white labels" like traditional machinery and body parts in the past. The hardware differentiation is getting smaller and the profits are becoming more and more transparent. It is possible that hardware will be sold to automakers at cost, while software will become the soul of vehicles and the new profit engine for OEMs. The differentiation and profitability of vehicles will shift to technology and related software stacks.

Under the trend of SOA and hierarchical decoupling, Tier1 suppliers or software suppliers have the following coping strategies:

1. For traditional Tier1 suppliers, it is a general trend that some system function development rights are taken back by OEMs. Therefore, they need transform and seek new ways urgently to avoid becoming hardware foundries. Traditional Tier1 giants are well aware of the fact that full-stack capabilities of software and hardware are the key to seizing the future overwhelming market share.  More and more Tier1 suppliers, represented by Bosch, Huawei, Desay SV, etc., are committed to creating full-stack technical capabilities covering "hardware + underlying software + middleware + application software algorithms + system integration", so that they can not only provide customers with hardware and software separately, but also offer software and hardware integration solutions.

2. While further strengthening the autonomy and independent software development capabilities, OEMs have begun to seek direct cooperation with software suppliers. For example, OEMs will first seek to take back cockpit HMI system functions to themselves, but directly purchase UI/UX design tools, voice recognition modules, sound effect modules, face recognition modules and other application software from software suppliers, thus bypassing traditional Tier1 suppliers to accomplish independent development. For software suppliers, the more software IP portfolios they can provide, the higher the value per car they can secure. At the same time, software suppliers are also seeking to dabble in hardware design and manufacturing (such as domain controllers, TBOX, etc.) controlled by traditional Tier1 suppliers in order to provide diversified solutions.
In general, software-defined vehicles are currently in varying forms. According to the objective development law of the software industry, the software-defined vehicle industry will show several characteristics in the long run as below:

1. The entry barriers of automotive software will continue to elevate, with higher and higher concentration. The development barriers of automotive software will threaten small and medium-sized vendors who may feel difficult to survive. Whoever can achieve rapid iteration and scale effects may thrive and grab a relatively high market share; for example, Kanzi, the UI design software of ThunderSoft, has occupied 80% of the domestic market share.

2. Automotive software will feature capital intensiveness, and needs more and more capital. External financing will be conducted in the hundreds of millions of dollars. In the end, there will be several large software suppliers in each segment of automotive software with the overwhelming market share.

Categories of Application Layer Software and Some Suppliers
  SVD 6_副本.jpg
Source: ResearchInChina

1 Overview of Software Defined Vehicle

1.1 Software Architecture Trends in EEA Evolution
1.1.1 Three Dimensions of Automotive EEA Upgrade: Software Architecture, Hardware Architecture, and Communication Architecture
1.1.2 Evolution of Vehicle Electronic/Electrical Architecture (EEA)
1.1.3 EEA Evolution: Centralized Computing + Zone Controller (Zonal Architecture)
1.1.4 EEA Evolution: Vehicle Central Computer (VCC)
1.1.5 Challenges in Software Development under the Traditional Distributed ECU Architecture 
1.1.6 Summary of Software Development Models under Different E/E Architectures

1.2 Intelligent Vehicle Software Architecture  
1.2.1 Intelligent Vehicle Software Architecture Includes Hypervisor, System Kernel, Middleware, Functional Software, and Application
1.2.2 Cores of Intelligent Vehicle Software (1): Overall Architecture
1.2.3 Cores of Intelligent Vehicle Software (2): Power and Chassis Controllers
1.2.4 Cores of Intelligent Vehicle Software (3): Body Controller
1.2.5 Cores of Intelligent Vehicle Software (4): Central Computing Unit
1.2.6 The core category of smart car software (5): Software and Hardware Design Goals
1.2.7 Synergy of Vehicle Software Architecture and Heterogeneous SoC 
1.2.8 Evolution of Future Vehicle Software Architecture 
1.2.9 Software Defined Vehicle R&D Process and System Transformation Trends
1.2.10 Software Defined Vehicle ASPICE Development Process

1.3 Intelligent Vehicle Software Business Models and Prospects
1.3.1 Transformation of Vehicle Sales Models: A Surge in Vehicle Software System Cost
1.3.2 Forecast of Global Intelligent Vehicle Software Industry Scale
1.3.3 Main Vehicle Software Business Models Includes One-time Pre-Installation Payment or On-demand Subscription Payment
1.3.4 Three Software Charging Methods of Tier1 Suppliers 
1.3.5 Intelligent Vehicle Software Charging Models: IP License Fees for Single Vehicle Software 
1.3.6 Estimated IP License Fees for Single Vehicle Software in Different Vehicle Software
1.3.7 OEMs Charge Customers Software License and OTA Update Service Fees to Build a Closed Business Model Loop
1.3.8 Transformation of Vehicle System Integration Modes: Roles of Various Hardware and Software Players
1.3.9 Platform + Ecosystem Model will Hold the Trend for Intelligent Vehicle Software 

1.4 Cost Structure of Intelligent Vehicle Software 
1.4.1 Vehicle Software Cost and Value Stream Estimation 
1.4.2 Software Costs of OEMs at All Levels 
1.4.3 Cost Structure of Software and Electronic Hardware for Vehicle End Customers 

1.5 Industry Chain Software Defines Vehicle Strategy 
1.5.1 Overall Trend of Software Defined Vehicle 
1.5.2 How the Industry Chain Responds to the Wave of Software Defined Vehicles
1.5.3 How Automakers Respond to the Wave of Software Defined Vehicles
1.5.4 Summary of Vehicle Software Companies Established by Major OEMs, 2019-2020  
1.5.5 Three Path Models for OEMs to Transform to Software 
1.5.6 OEMs Focus on Developing Middle-layer OS and Define Communications and Services to Simplify Systems from an Open Source Perspective 
1.5.7 How Tier1 Suppliers Respond to the Wave of Software Defined Vehicles
1.5.8 Software Defined Vehicle Strategies of the 4 Types of Players such as OEMs and Tier1 Suppliers 

2 Basic Software (System Kernel, Middleware and SOA)

2.1 Vehicle Operating System
2.1.1 Classification: Real-time and Non-real-time Operating Systems
2.1.2 Application of Vehicle Operating System (1)
2.1.3 Application of Vehicle Operating System (2)
2.1.4 System Kernels are the Core of Vehicle Software Architecture
2.1.5 System Kernels are Divided into Three Types: Micro Kernel, Macro Kernel, and Hybrid Kernel 
2.1.6 BlackBerry QNX
2.1.7 Linux & AGL
2.1.8 Android Automotive & Android Auto
2.1.9 Huawei’s HarmonyOS Hybrid Kernel Operating System
2.1.10 Baidu Apollo's Open Source Autonomous Driving Software Development Platform 
2.1.11 AICC INC’s ICVOS Autonomous Driving Operating System
2.1.12 Domestic Cockpit Operating System Co-developed by China Automotive Innovation Cooperation (CAIC) and PATEO IOV   
2.1.13 Volkswagen VW.OS
2.1.14 Tesla Version
2.1.15 Status Quo and Development Pattern of Operating Systems Inside and Outside China (System Kernel)
2.1.16 Global Automotive Operating System Market Size

2.2 Hypervisor
2.2.1 Hypervisor is the Foundation for Building an Intelligent Computing Platform Operating System
2.2.2 Automotive Hypervisor Providers 

2.3.1 Comparison of AUTOSAR Classic Platform (CP) and AUTOSAR Adaptive Platform (AP) 
2.3.2 AUTOSAR Encapsulates Basic Software into Packages Which are Called by Upper Layer Applications Through Standardized Interfaces
2.3.3 AUTOSAR AP Architecture Follows SOA Concept 
2.3.4 AUTOSAR AP and Ethernet Communication (SOME/IP) Protocol
2.3.5 Technological Revolution Route of AUTOSAR AP  
2.3.6 Major AUTOSAR Tool Providers
2.3.7 Status Quo and Development Pattern of AUTOSAR Inside and Outside China (Software Platform, Basic Software)  
2.3.8 Establishment of China Automotive Basic Software Ecosystem Committee (AUTOSEMO)

2.4 The Value of Domain Control Middleware will be Highlighted
2.4.1 The Value of Domain Control Middleware will be Highlighted as Communication Architecture is Transformed from "Signal-oriented" to "Service-oriented" 
2.4.2 Tier1.5s and New Development Models Will Come out on Computing Basic Platforms 
2.4.3 Middleware is the Key to Future Software Value Growth
2.4.4 Domain Control Software Platform Providers Will Play More Important Role
2.4.5 Tier1s Work to Deploy Domain Control Basic Software
2.4.6 Status Quo and Development Pattern of Domain Control Basic Software Inside and Outside China

2.5 Service Oriented Architecture (SOA)
2.5.1 SOA Basic Software Architecture
2.5.2 Three Features of SOA 
2.5.3 Transformation of SOA Communication Mode: from CAN Communication to Ethernet Communication
2.5.4 SOA Design under Central Computing EEA
2.5.5 Challenges in SOA Development and Application Model, and Strategies
2.5.6 Deployment of SOA Vehicle Software on Domain Controllers
2.5.7 SOA Software Deployment Cases of OEMs 
2.5.8 Summary of SOA Software Platform Mass Production Progress of OEMs and Tier1s 
2.5.9 Summary of SOA Software Platform Progress of OEMs and Tier1s (4)

2.6 Basic Software Business of Neusoft Reach
2.6.1 Position
2.6.2 Next Generation Operating System: NeuSAR 
2.6.3 Helped to Found China Automotive Basic Software Ecosystem Committee (AUTOSEMO) 
2.6.4 SDV (Software Defined Vehicle) Oriented Software Architecture
2.6.5 SDV (Software Defined Vehicle) Oriented Solutions 
2.6.6 Basic Software Product NeuSAR 3.0 (1)
2.6.7 Basic Software Product NeuSAR 3.0: SOA Oriented Software Framework 
2.6.8 AUTOSAR aCore Architecture
2.6.9 AUTOSAR cCore Architecture 

2.7 Basic Software Business of Huawei
2.7.1 Intelligent Vehicle "Computing + Communication (CC)" Architecture 
2.7.2 Based on the CC Architecture, Launched Three Domain Control Platforms: MDC, CDC ad VDC
2.7.3 Intelligent Vehicle Solutions
2.7.4 Released Three Operating Systems: AOS / HOS / VOS
2.7.5 HarmonyOS Architecture Upgrade
2.7.6 100% Self-development Based on AUTOSAR, Achieving High Degrees of Matching, Integration and Freedom
2.7.7 Self-developed AUTOSAR CP and AUTOSAR AP Architectures 
2.7.8 Intelligent Connected Vehicle Architecture
2.7.9 Autonomous Driving Operating System (AOS) and Intelligent Vehicle Control Operating System (VOS)
2.7.10 Vehicle Basic Software and SOA Service Framework 

2.8 Basic Software Business of iSOFT
2.8.1 Profile
2.8.2 AUTOSAR Basic Software Platform Products and Technical Services
2.8.3 Major Customers and Dynamics in Cooperation 

2.9 Basic Software Business of Jingwei Hirain Technologies
2.9.1 Profile
2.9.2 AUTOSAR Solutions  
2.9.3 AUTOSAR AP Software Component Architecture
2.9.4 Schematic Diagram of Adaptive AUTOSAR Tool Chain Solution
2.9.5 AUTOSAR AP RoadMap
2.9.6 AUTOSAR AP Mass Production Project Cases
2.9.7 AUTOSAR AP Pre-research and Application Practices (AUTOSAR-based SOA Software Platform Practices) 

2.10 SAIC Z-ONE Software
2.10.1 Launch of SOA Developer Platform
2.10.2 Timetable for Launch of SOA Software Developer Platform
2.10.3 SOA Platform Architecture
2.10.4 SOA Platform Developer Ecosystem

2.11 Zlingsmart
2.11.1 Profile
2.11.2 RAITE Hypervisor 
2.11.3 RAITE OS
2.11.4 Intelligent Cockpit Solutions
2.11.5 Main Dynamics

2.12 Elektrobit (EB)
2.12.1 Profile
2.12.2 Solutions Based on Adaptive AUTOSAR 
2.12.3 Solutions Based on Adaptive AUTOSAR: HPC Software Architecture
2.12.4 Solutions Based on Adaptive AUTOSAR: Adaptive AUTOSAR Product Lines
2.12.5 AUTOSAR Software Tool Products: EB Tresos
2.12.6 AUTOSAR Software Tool Products: EB Tresos Studio
2.12.7 EB Tresos Solution for NVIDIA DRIVE? PX
2.12.8 ArcherMind Technology Became a Value-added Distributor of Elektrobit in China
2.12.9 Major Customers and Partners 

3 Autonomous Driving Software Architecture
Overall Software and Hardware Architecture of Autonomous Driving

3.1 Autonomous Vehicle Control Operating System
3.1.1 Autonomous Driving OS Platform Architecture
3.1.2 Classification of Autonomous Vehicle Control OS 
3.1.3 Layering and Trends of Autonomous Driving OS
3.1.4 Comparison of QNX, Linux and VxWorks Vehicle OS
3.1.5 Deep Learning Software Related to Autonomous Driving Functional Software Modules

3.2 Autonomous Driving Functional Software and Open Source Platform
3.2.1 Specifications for Design of Intelligent Driving Functional Software Platform
3.2.2 Functional Software Modularizes Common Needs to Help Rapid Application Deployment
3.2.3 Summary of the World's Four Major Autonomous Driving Software Open Source Platforms 

3.3 Autonomous Driving Middleware
3.3.1 Introduction to Middle Base/Middleware
3.3.2 Summary of Autonomous Driving Middleware Product Progress of Global and Chinese Tier1s
3.3.3 China's Autonomous Driving Middleware Market Size

3.4 Autonomous Driving Algorithm Application Software
3.4.1 Overview of ADAS/AD Algorithm Software (1)
3.4.2 Overview of ADAS/AD Algorithm Software (2)
3.4.3 3 Types and Development Cycle of ADAS/AD Algorithm Software
3.4.4 Overall Market Penetration and Single Vehicle Value of ADAS/AD Functions (Software and Hardware System Integration Solutions) 
3.4.5 Market Size of ADAS/AD Functions (Software and Hardware System Integration Solutions) (RMB100 Million) 
3.4.6 China's Vehicle ADAS/AD Algorithm Application Software Market Size
3.4.7 Status Quo and Main Suppliers of Around View Monitor (AVM) 
3.4.8 Status Quo and Main Suppliers of Automated Parking (APA/AVP) 
3.4.9 Status Quo and Main Suppliers of Passenger Car Autonomous Driving System Startups (Tier1s) 
3.4.10 Status Quo and Main Suppliers of Commercial Vehicle L1/L2 Driving Assistance System Startups (Hardware + Software Algorithm)
3.4.11 Status Quo and Main Suppliers of Commercial Vehicle L3/L4 Autonomous Driving System Integrators (Hardware + Software Algorithm)

3.5 HD Map
3.5.1 HD Map Layers and Update Frequency
3.5.2 Business Model of HD Map
3.5.3 HD Map Industry Chain Distribution
3.5.4 Global and Chinese HD Map Players
3.5.5 Market Prospects of HD Map/Navigation Electronic Map 

3.6 Autonomous Driving Simulation
3.6.1 Overview of Autonomous Driving Simulation
3.6.2 Status Quo of Autonomous Driving Simulation Market
3.6.3 Global Mainstream Autonomous Driving Simulation Software Companies
3.6.4 Huawei Autonomous Driving Cloud Service: Octopus
3.6.5 Market Prospects of Autonomous Driving Simulation Test Software 

3.7 Neusoft Reach
3.7.1 Full-stack Autonomous Driving Software Platform: Software and Hardware Architecture of Autonomous Driving Domain Controller X-BOX 3.0 
3.7.2 Full-stack Autonomous Driving Software Platform: Middleware and Ecological Software Package
3.7.3 Autonomous Driving Domain Controller: M-Box ADAS Domain Controller Finds Application in Mass-produced New Baojun E300
3.7.4 Automated ADAS Business: Autonomous Driving Products for L0-L3
3.7.5 Automated ADAS Business: Autonomous Driving Software Platform
3.7.6 Automated ADAS Business: Intelligent Driving Cloud Platform
3.7.7 Automated ADAS Business: L4 Advanced Technology

3.8 Huawei
3.8.1 Overall Architecture of MDC Platform
3.8.2 MDC Hardware Platform
3.8.3 MDC Software and Tool Chain
3.8.4 MDC Automotive Security Platform
3.8.5 MDC Passed ISO26262 Functional Safety Certification and ASPICE Software Certification

3.9 TTTech & Technomous
3.9.1 Profile of TTTech
3.9.2 TTTech Autonomous Driving Solutions 
3.9.3 Technical Advantages of TTTech Autonomous Driving Controller Platform
3.9.4 TTTech Autonomous Driving Security Software Platform: MotionWise (1) 
3.9.5 TTTech Autonomous Driving Security Software Platform: MotionWise (2)
3.9.6 Cooperation between TTTech and SAIC: Development of Intelligent Electronic Control Unit (iECU)  
3.9.7 Technomous Provides Customers with Domain Controller Hardware and Software Platform
3.9.8 MotionWise Software Platform for Technomous iECU Controller 
3.9.9 Typical Customer Applications of Technomous iECU

3.10 Enjoy Move Technology
3.10.1 Profile
3.10.2 Technology and Products 
3.10.3 Ecological Construction
3.10.4 High-performance Computing Software Platform: EMOS1.0
3.10.5 High-performance Computing Software Platform: Technical Features of EMOS1.0 
3.10.6 High-performance Computing Software Platform: Multi-domain Integrated Software Platform
3.10.7 Multi-domain Integrated Computing Platform
3.10.8 Business Model

3.11 Nullmax
3.11.1 Profile
3.11.2 Advantages of Autonomous Driving Middleware
3.11.3 Details of Autonomous Driving Middleware Development

4 Intelligent Cockpit Software Architecture
Overall Software and Hardware Architecture of Intelligent Cockpit

4.1 Composition and Trends of Intelligent Cockpit Software Platform
4.1.1 What is Intelligent Cockpit Software Platform
4.1.2 Future Cockpit Needs New Cockpit Software Architectures
4.1.3 Summary of Main Cockpit Software Solutions
4.1.4 Thundersoft’s SOA-based Intelligent Cockpit Software Solution
4.1.5 Huawei HarmonyOS-powered Cockpit Software Platform: HOS-A
4.1.6 Zlingsmart’s Intelligent Cockpit Solution
4.1.7 Megatronix’s Cockpit Solution 
4.1.8 Banma Zhixing’s Heterogeneous Fusion Intelligent Cockpit OS
4.1.9 Neusoft Reach’s SDV-oriented Complete Solution 
4.1.10 Continental Creates a HPC-based Integrated Software Platform for Next Generation Automotive Electronics Architectures 
4.1.11 UAES’s AUTOSAR AP-based Open Software Platform
4.1.12 SAIC’s SOA Software Platform

4.2 Intelligent Cockpit Operating System 
4.2.1 Overview of Cockpit Operating System
4.2.2 Status Quo of Cockpit Operating System Market
4.2.3 Cockpit Operating System: Secondary Development Based on Underlying OS
4.2.4 Status Quo of Cockpit Operating System Market
4.2.5 Status Quo and Development Pattern of Intelligent Cockpit Operating System Inside and Outside China 

4.3 Cockpit Hypervisor 
4.3.1 Overview of Cockpit Hypervisor
4.3.2 Types of Cockpit Hypervisor 
4.3.3 Status Quo of Cockpit Hypervisor 
4.3.4 Global and Chinese Cockpit Hypervisor Players 
4.3.5 Market Prospects of Cockpit Hypervisor 

4.4 Cockpit Middleware
4.4.1 Status Quo of Cockpit Middleware Market 
4.4.2 Cockpit Middleware Software Architecture
4.4.3 Major Global and Chinese Cockpit Middleware Players
4.4.4 Market Prospects of Vehicle Cockpit Middleware 

4.5 In-vehicle Voice Interaction
4.5.1 Overview of Human Computer Interaction
4.5.2 Overview of In-vehicle Voice Interaction Technology
4.5.3 Status Quo of In-vehicle Voice Interaction Market 
4.5.4 Global and Chinese In-vehicle Voice Players
4.5.5 Market Prospects of In-vehicle Voice 

4.6 DMS/OMS Software
4.6.1 Overview of DMS 
4.6.2 DMS Software Technology
4.6.3 Status Quo of DMS Market 
4.6.4 Major Global and Chinese DMS Software Technology Players
4.6.5 Market Prospects of DMS Software Technology

4.7 Other Interaction Software
4.7.1 Overview of Face Recognition Interaction Technology 
4.7.2 Major Global and Chinese Face Recognition Players
4.7.3 Market Prospects of Vehicle Face Recognition
4.7.4 Overview of Gesture Recognition and Interaction Technology
4.7.5 Major Global and Chinese Gesture Recognition Players

4.8 HMI Design and User Experience
4.8.1 Overview of Vehicle Interface Design
4.8.2 Classification of HMI Design 
4.8.3 Main HMI Design Software Tools
4.8.4 Varroc and Candera Cooperate to Develop HMI Software Solutions
4.8.5 Major Global and Chinese HMI UI/UX Designers 
4.8.6 Market Prospects of Cockpit HMI UI/UX Design

4.9 Neusoft 
4.9.1 Profile
4.9.2 Intelligent Cockpit System
4.9.3 Vehicle Computing Platform: Upgradeable Multi-Domain Control Platform
4.9.4 Dynamics in Intelligent Cockpit

4.10 Huawei
4.10.1 Intelligent Cockpit Solutions
4.10.2 Intelligent Cockpit Operating System: HOS
4.10.3 HarmonyOS-powered Intelligent Cockpit Platform
4.10.4 HarmonyOS-powered Intelligent Cockpit Ecosystem 
4.10.5 CDC Intelligent Cockpit Platform

4.11 Megatronix
4.11.1 Profile
4.11.2 Product Lines
4.11.3 SmartMega? OS+ Vehicle Distributed Intelligent Operating System
4.11.4 SmartMega? Voice OS 
4.11.5 Product Solutions: Intelligent Connected Gateway
4.11.6 Product Solutions: Intelligent Digital Cockpit 
4.11.7 Product Solutions: Body Domain Controller
4.11.8 Product Solutions: Intelligent Vehicle Cloud and Big Data Platform as a Service (PaaS) 
4.11.9 Product Solutions: Traditional Gateway 
4.11.10 Product Solutions: T-BOX
4.11.11 Aftermarket Intelligent Product Line
4.11.12 Business Progress and Customers
4.11.13 Business Model
4.11.14 Competitive Edges

4.12 ThunderSoft
4.12.1 Profile 
4.12.2 Overview of Intelligent Cockpit Business 
4.12.3 Intelligent Connected Software Business Layout
4.12.4 Intelligent Cockpit Solutions
4.12.5 Intelligent Cockpit: TurboX Auto 4.5
4.12.6 Cockpit Domain Integrates Scenarios such as Automated Parking, DMS, and Front View ADAS 
4.12.7 TurboX Auto 4.0
4.12.8 Cloud-pipeline-terminal Integrated SOA Software Platform
4.12.9 Rightware HMI Design Tool: KANZI HMI
4.12.10 Intelligent Vehicle Software Ecosystem Partners

4.13 ArcherMind Technology
4.13.1 Profile
4.13.2 Revenue 
4.13.3 Product Lines of Automotive Division 
4.13.4 Released EX5.0 Intelligent Cockpit Software Platform
4.13.5 Intelligent Cockpit Solution: EX4.0 
4.13.6 EX4.0: Tool Set
4.13.7 SOA Technical Architecture
4.13.8 SOA Business Model
4.13.9 Became a Value-added Distributor of Elektrobit in China
4.13.10 Main Dynamics 

4.14 Huizhou Foryou General Electronics 
4.14.1 ADAYO Automotive Electronics Business
4.14.2 ADAYO Automotive Open Platform (AAOP): Helping to Build Intelligent Connected Ecosystem 
4.14.3 AAOP2.0 Cockpit Open Platform: Hierarchical and Layered Technical Framework 
4.14.4 AAOP2.0 Cockpit Open Platform: Infotainment and Intelligent Cockpit Integration 
4.14.5 Features of AAOP2.0 Cockpit Open Platform (1)
4.14.6 Features of AAOP2.0 Cockpit Open Platform (2)
4.14.7 Features of AAOP2.0 Cockpit Open Platform (3)
4.14.8 Features of AAOP2.0 Cockpit Open Platform (4)
4.14.9 Features of AAOP2.0 Cockpit Open Platform (5)
4.14.10 AAOP Cooperation Cases 

5 Telematics Software Architecture 

5.1 V2X CVIS
5.1.1 The Value of V2X Telematics in China's Future Vehicle Industry Chain 
5.1.2 Exploration of CVIS Payment Models
5.1.3 Traditional Cockpit Tier1s Will Be Transformed into Highly Integrated Solution Providers
5.1.4 Providers of V2X Software Stack and Application Services 
5.1.5 V2X Cloud Control Basic Platform Software
5.1.6 Market Prospects of C-V2X in China
5.2 Cloud Service Platform
5.2.1 Overview of Cloud Platform
5.2.2 Status Quo of Cloud Service Platform Market 
5.2.3 Global and Chinese Cloud Service Platform Players
5.2.4 Market Prospects of Cloud Service Platform

5.3 OTA
5.3.1 Overview of OTA
5.3.2 OTA Architecture and Cooperation Modes
5.3.3 Composition of Vehicle OTA Industry Chain
5.3.4 Status Quo of OTA Market 
5.3.5 Vehicle OTA TO-B Business Model 
5.3.6 Global and Chinese OTA Players
5.3.7 Market Prospects of OTA 

5.4 Automotive Cyber Security 
5.4.1 Overview of Automotive Cyber Security
5.4.2 Status Quo of Automotive Cyber Security
5.4.3 Global and Chinese Automotive Cyber Security Players
5.4.4 Market Prospects of Automotive Cyber Security 

5.5 TSP Service
5.5.1 Overview of TSP Service
5.5.2 Status Quo of TSP Service Market 
5.5.3 Chinese TSP Service Players 
5.5.4 Market Prospects of TSP Service

5.6 Neusoft 
5.6.1 V2X Business
5.6.2 V2X One-stop Solution
5.6.3 V2X CVIS Product Line
5.6.4 V2X CVIS Products: C-V2X OBU—V-NeX (C-BOX)
5.6.5 C-V2X OBU/RSU Products
5.6.6 Functions and Features of C-V2X Software Protocol Stack 
5.6.7 Intelligent Communication Terminal (T-BOX)
5.6.8 T-Box Product Development and Technology Roadmap
5.6.9 V2X Product: VeTalk Vehicle-Infrastructure-Cloud Integrated Cooperative Platform
5.6.10 Successful C-V2X Cases 
5.6.11 5G V2X Customers and Cooperation

5.7 ABUP
5.7.1 Profile
5.7.2 Development History 
5.7.3 OTA Solutions and Latest Features
5.7.4 Major Partners

Monthly Monitoring Report on China Automotive Sensor Technology and Data Trends (Issue 3, 2024)

Insight into intelligent driving sensors: “Chip-based” reduces costs, and the pace of installing 3-LiDAR solutions in cars quickens. LiDARs were installed in 173,000 passenger cars in China in Q1 2024...

Autonomous Driving Simulation Industry Report, 2024

Autonomous Driving Simulation Research: Three Trends of Simulation Favoring the Implementation of High-level Intelligent Driving. On November 17, 2023, the Ministry of Industry and Information Techno...

Mobile Charging Robot Research Report, 2024

Research on mobile charging robot: more than 20 companies have come in and have implemented in three major scenarios. Mobile Charging Robot Research Report, 2024 released by ResearchInChina highlight...

End-to-end Autonomous Driving (E2E AD) Research Report, 2024

End-to-end Autonomous Driving Research: status quo of End-to-end (E2E) autonomous driving 1. Status quo of end-to-end solutions in ChinaAn end-to-end autonomous driving system refers to direct mappi...

Monthly Monitoring Report on China Automotive Intelligent Driving Technology and Data Trends (Issue 2, 2024)

Insight into intelligent driving: ECARX self-develops intelligent driving chips, and L2.5 installation soared by 175% year on year.   Based on the 2023 version, the 2024 version of Monthly...

Monthly Monitoring Report on China Automotive Intelligent Cockpit Technology and Data Trends (Issue 2, 2024)

Insight into intelligent cockpit: the trend towards large screens is obvious, with >10" center console screens sweeping over 80%. Based on the 2023 Edition, the 2024 Edition of Monthly Monitoring...

China Intelligent Driving Fusion Algorithm Research Report, 2024

Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and enhanced planning and control become the trend. China Intelligent Driving Fusion Algorithm Research Report, 2024 ...

Automotive Electronics OEM/ODM/EMS Industry Report, 2024

Automotive electronics OEM/ODM/EMS research: top players’ revenue has exceeded RMB10 billion, and new entrants have been coming in.  At present, OEMs in the Chinese automotive electronics indus...

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号