Automotive High-precision Positioning Research Report, 2022
  • Feb.2022
  • Hard Copy
  • USD $4,700
  • Pages:410
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: ZHP118
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

High-precision Positioning Research: from L2+ to L3, high-precision integrated navigation and positioning will become the standard

With the development and progress of the autonomous driving industry, 5G communication and Beidou navigation applications are becoming more and more mature, and the high-precision positioning market has seen development opportunities. From 2022 to 2025, autonomous driving will gradually evolve from L2/L2+ to L3/L3+. High-level autonomous driving has higher requirements for positioning accuracy which should reach the centimeter level. This promotes the further development of high-precision integrated positioning technology.

定位 1_副本.png

L3 autonomous driving is heading for mass production, and integrated navigation positioning becomes the standard

In March 2021, Honda officially released the L3 autonomous production car, Honda Legend EX (which obtained L3 autonomous driving certification from the Ministry of Land, Infrastructure, Transport and Tourism of Japan) equipped with the Honda SENSING Elite intelligent driving system, high-precision positioning modules, sensors and a 3D HD map.

Honda has produced 100 units of L3 autonomous models, which are leased and sold to users in Japan for three years, allowing users to drive on designated roads in Tokyo.

定位 2_副本.png

In December 2021, the German Federal Motor Transport Authority (KBA) granted system approval for Mercedes-Benz's L3 autonomous driving system on the basis of the technical approval regulation UN-R157 (UN Regulation No. 157 - Automated Lane Keeping Systems (ALKS)), allowing the sale and driving of L3 autonomous vehicles from a legal level. This is a breakthrough in mass-produced autonomous driving technology.

According to Mercedes-Benz's plan, its two flagship sedans, S-Class and EQS, will be equipped with the L3 autonomous driving system (including a high-precision positioning module + HD map) at first. It is expected that consumers will be able to purchase L3 Mercedes-Benz cars in the first half of 2022. The contracting states of UN-R157 include EU countries, the United Kingdom, Japan, South Korea, Australia, etc., which means that Mercedes-Benz's L3 autonomous vehicles can be sold in these countries.

定位 3_副本.png

China has not legally allowed L3 autonomous vehicles to be on the road, but L2+ (close to L3) autonomous models have been launched intensively so far. According to the statistics of ResearchInChina, the assembly rate of L2 autonomous passenger vehicles exceeded 20% in China in 2021. Some of the L2 models have achieved high-speed pilot autonomous driving by installing high-precision positioning and HD maps. For example, Xpeng P7, NIO EC6, ES6, ES8, GAC Aion V, Aion LX, Great Wall WEY Mocha and other models can be equipped with optional high-precision positioning modules. FAW Hongqi E-HS9, HiPhi X, 2021 Li ONE and other models are equipped with high-precision positioning modules as standard.

In addition to the existing mass-produced models, OEMs have successively launched more than 10 models equipped with high-precision positioning technology since 2021, such as Xpeng P5, NIO ET7, Neta U Pro, Aion V Plus, Aion LX Plus, Great Wall Mecha Dragon, BAIC ARCFOX αS Hi, etc.

定位 4_副本.png

Currently, a single positioning technology cannot meet the high precision required for autonomous vehicles. The solutions used by OEMs basically use multi-sensor integrated positioning technology. In addition to integrated navigation modules and HD maps, technologies such as visual SLAM and Lidar are also used.

Relative positioning cannot be used with standard HD maps, because their coordinate systems, data formats, interfaces, and timelines are completely different. Standard HD maps must be used with absolute positioning. Therefore, the current mainstream positioning technology is that GNSS, IMU, and HD maps cooperate and complement each other to form a high-precision positioning system for autonomous driving.

Baidu: It has been laid out for many years in integrated positioning technology, and can provide self-positioning system and centimeter-level integrated positioning solutions based on GPS, IMU, HD maps and data from multiple sensors.

Baidu Apollo's research and test results show that GNSS-RTK can cover 65% of integrated scenarios with the error of less than 20cm, the combination of GNSS+IMU can cover about 85% of the scenarios, and the high-precision positioning system consisting of GNSS+IMU, sensors and maps can achieve 97.5% coverage.

定位 5_副本.png

The integration trend of high-precision positioning technology is obvious

(1) Independent positioning box
In terms of product form, the current automotive integrated navigation system with high-precision positioning mainly exists in the form of a positioning terminal, that is, a positioning box (P-Box).

定位 6_副本.png

As a small ECU responsible for high-precision positioning, P-Box can provide positioning data to the map module to realize the matching of positioning technology and HD maps.

定位 7_副本.png

With the advancement of technology, in addition to integrating GNSS and IMU, P-Box will further integrate HD maps. By HD maps and high-precision positioning, more accurate positioning data can be obtained.

Asensing: In April 2021, an HD map box was launched, which integrates IMU, RTK, vehicle speed, ADAS cameras and HD map data. Based on the fusion of MEMS high-precision inertial navigation data and high-precision satellite positioning data, the HD map box adds perception data of ADAS cameras and HD maps to make the lateral error less than 0.2 meters and the longitudinal error less than 2 meters at 95% confidence interval.

定位 8_副本.png


 (2) Integration with wireless communication modules
The integration of automotive wireless communication modules and GNSS high-precision positioning is becoming a trend. For example, the Hongqi E-HS9 launched at the end of 2020 is equipped with a C-V2X smart antenna developed with Neusoft jointly and integrated with a GNSS receiver; Buick GL8 Avenir, launched at the end of 2020, is equipped with Quectel's AG15 and AG35 modules and GNSS technology.

Joynext: On the basis of the traditional T-Box module, it integrates V2X, Bluetooth key, high-precision positioning and HD map output, providing sub-meter high-precision positioning. Joynext has signed a contract with NIO's 5G-V2X platform project to provide the latter with 5G-TBOX and 5G-VBOX, which will be applied on ET7 at first.

定位 9_副本.png

Quectel: It has cooperated with Qualcomm and Qianxun SI to launch a variety of automotive communication modules that support high-precision positioning based on Qualcomm's 3D dead reckoning technology and built-in Qianxun SI's high-precision positioning service. For example, AG55xQ series, the 5G&C-V2X automotive module   with built-in multi-constellation GNSS (GPS/GLONASS/BeiDou/Galileo/QZSS) receiver, can support dual-frequency GNSS, high-precision RTK/PPE and GNSS/QDR integrated navigation solutions according to application requirements.

定位 10_副本.png

(3) Integration with Autonomous Driving Domain Controllers
Integrating the high-precision positioning module into the autonomous driving domain controller can reduce data transmission, effectively shorten information delay, and improve positioning accuracy. At present, automakers have begun to disassemble integrated navigation boxes and integrate GNSS modules and IMU modules into their own domain controllers.

At present, passenger cars basically use sub-meter-level integrated positioning modules, which have a low level of functional safety and are not necessary to integrate into domain controllers. When autonomous driving evolves to L3+, L4/L5, high-precision integrated positioning modules must reach the centimeter level, and meet higher functional safety requirements, so that they can be integrated into autonomous driving domain controllers. By then, the value of the integrated navigation and positioning module of each vehicle will be higher, which will also be the priority of major OEMs and suppliers in the next stage.

With the maturity of domain controller technology and the evolution of electronic and electrical architecture, the integration of high-precision positioning units and high-level autonomous driving domain controllers may become one of the mainstream solutions.

The prospect of high-precision positioning market is promising
According to Intelligent Connected Vehicle Technology Roadmap 2.0 released in November 2020, the penetration rate of L2-L3 ICVs will reach 50% by 2025, and L4 ICVs will begin to enter the market and be available in certain scenarios and limited areas for commercial applications; by 2030, the penetration rate of L2-L3 ICVs will reach 70%, and L4 ICVs will be widely seen on expressways and some urban roads.

Supported by policies, the assembly rate of L2 autonomous vehicles will continue to grow, and the assembly rate of sub-meter-level integrated positioning modules will keep rising; L3 and L4 autonomous vehicles will gradually spread to the market, and the shipments of centimeter-level integrated positioning modules with higher value will swell. Therefore, it can be predicted that the market space for high-precision positioning in the next few years is very broad.

定位 11_副本.png

With the increase in the assembly rate of L2+ and L3 autonomous driving functions, the high-precision positioning market has a promising prospect, and the industry will be recognized by investors.

In October 2021, Asensing raised hundreds of millions of RMB in Series C financing led by Sequoia China and joined by Matrix Partners, GL Ventures and other institutions. The funds will be spent on the research and development of the next-generation functional safety high-precision positioning technology, product design improvement and capacity construction.

In October 2021, DAISCH completed the Pre-A round of financing, which was involved with Aosheng Capital. The raised funds will be invested in developing new products and processes, and improving delivery capabilities.

Automotive High-precision Positioning Research Report, 2022  by ResearchInChina highlights the following:
20120114.gifClassification, technical challenges, industrial policies, market size, corporate structure, development trends, etc. of high-precision positioning technology;
20120114.gifApplication scenarios and market forecasts for autonomous driving positioning, including autonomous passenger car positioning solutions and market forecasts, low-speed autonomous driving high-precision positioning solutions and market forecasts, autonomous special vehicle positioning solutions and market forecasts, etc.;
20120114.gifDevelopment of signal-based positioning technology, signal-based positioning solutions of major suppliers;
20120114.gifIndustrial pattern of inertial navigation positioning, positioning products and positioning solutions of major inertial positioning technology suppliers;
20120114.gifStatus quo of integrated navigation technology, supplier structure, positioning solutions of major integrated positioning technology suppliers;
20120114.gifMain products, main technologies, development trends of basic positioning technology suppliers.

Chapter 1 Status Quo of High-precision Positioning Industry
1.1 Classification of High-precision Positioning Technologies
1.1.1 Main Types of High-precision Positioning Technologies
1.1.2 Signal-based Positioning Technology
1.1.3 Dead Reckoning-based Positioning Technology
1.1.4 Environment Feature Matching-based Positioning Technology (I)
1.1.5 Environment Feature Matching-based Positioning Technology (II)
1.1.6 Integrated Positioning Technology
1.1.7 Functional Comparison of Various High-precision Positioning Sensors
1.1.8 Marked Superiority of GNSS+IMU
1.2 Challenges to High-precision Positioning Technologies
1.2.1 High Requirements on Algorithm Robustness
1.2.2 Long Link of System Integration
1.2.3 In-vehicle Functional Safety Ensured
1.3 High-precision Positioning Technology Industry Policies
1.3.1 Policies Facilitate the Development of High-precision Positioning Industry
1.4 High-precision Positioning Companies and Their Developments
1.4.1 High-precision Positioning Industry Landscape
1.4.2 Pattern of GNSS+IMU Suppliers
1.4.3 Product Competitiveness Makeup of GNSS+IMU Suppliers

Chapter 2 High-precision Positioning Technologies for Autonomous Driving and Development Direction
2.1 Requirement on Positioning Indices for Autonomous Vehicle
2.1.1 Application of High-precision Positioning in Intelligent Driving
2.1.2 Requirement on High-precision Positioning Indices for ICVs
2.1.3 Requirement on Satellite Positioning Indices for ICVs
2.1.4 Requirement of Autonomous Vehicle on Positioning System
2.1.5 High-accuracy Position Situation System for Autonomous Driving
2.1.6 Position Situation Accuracy Calculation for Autonomous Driving
2.1.7 Visualized High-accuracy Position Situation Map for Autonomous Driving
2.2 Autonomous Driving Positioning Technology Solutions
2.2.1 Classification of Location Information Technology Solutions for Autonomous Driving
2.2.2 Pure Vision Positioning Solution
2.2.3 Fusion Positioning Technology Solution
2.2.4 CVIS (Cooperative Vehicle Infrastructure System) Positioning Solution
2.2.5 High-precision Positioning Solution Used for L3 Autonomy
2.2.6 High-precision Positioning Solution Used for L4 Autonomy
2.2.7 High-precision Positioning Solution Used for Production Vehicle Models with V2X
2.2.8 High-precision Positioning System Architecture for Autonomous Driving
2.3 Trend (I): High-precision Positioning Integration in the Evolution of E/E Architecture
2.3.1 Combination of High-precision Positioning Module with New EEA
2.3.2 High-precision Positioning Module in Split Architecture
2.3.3 High-precision Positioning Module in Self-driving Domain Control Architecture
2.3.4 Time Synchronization of E/E Architecture
2.3.5 GNSS+IMU Positioning Module Development Trend in the Evolution of E/E Architecture
2.4 Trend (II): Indoor and Outdoor Integrated Positioning
2.4.1 Indoor and Outdoor Integrated Positioning Technology
2.4.2 Indoor and Outdoor Integrated Positioning Map Service
2.4.3 Indoor and Outdoor Integrated Positioning Navigation Service
2.4.4 Indoor and Outdoor Integrated Positioning User Service
2.5 Trend (III): Integration
2.5.1 High-precision Positioning Mainly in Form of Terminals
2.5.2 P-BOX Development Trend
2.5.3 Integrated Development
2.5.4 5G Fusion Positioning
2.5.5 Orientation of Integration
2.6 Trend (IV): Centralization of LBS (Location Based Service)
2.6.1 LBS Fusion Ecosystem Content
2.6.2 Combination of Location Guide with ADAS/ADS/V2X
2.6.3 Modular Customization of LBS

Chapter 3 Use Scenarios and Market Trends of High-precision Positioning
3.1 Use Scenario: High-precision Positioning Technology Solution for Passenger Car
3.1.1 Major High-precision Positioning Technology Solutions for Self-driving Passenger Cars (I)
3.1.2 Major High-precision Positioning Technology Solutions for Self-driving Passenger Cars (II)
3.1.3 Major High-precision Positioning Technology Solutions for Self-driving Passenger Cars (III)
3.1.4 Major High-precision Positioning Technology Solutions for Self-driving Passenger Cars (IV)
3.1.5 High-precision Positioning Module Installations onto Self-driving Passenger Cars
3.1.6 OEMs’ High-precision Positioning Hardware Configurations (I)
3.1.7 OEMs’ High-precision Positioning Hardware Configurations (II)
3.1.8 XPeng’s High-precision Positioning Technology Mass-Production Trend
3.1.9 XPeng’s XPILOT 4.0 Positioning Technology
3.1.10 NIO’s High-precision Positioning Technology Mass-Production Trend
3.1.11 Lixiang Automotive’s High-precision Positioning Technology Mass-Production Trend
3.1.12 HOZON’s High-precision Positioning Technology Mass-Production Trend
3.1.13 Human Horizons’ High-precision Positioning Technology Mass-Production Trend
3.1.14 BAIC ARCFOX’s High-precision Positioning Technology Mass-Production Trend
3.1.15 Great Wall Motor’s High-precision Positioning Technology Mass-Production Trend
3.1.16 FAW Hongqi’s High-precision Positioning Technology Mass-Production Trend
3.1.17 GAC’s High-precision Positioning Technology Mass-Production Trend
3.1.18 GAC’s High-precision Positioning Technology Solution
3.1.19 GM’s (Cadillac) High-precision Positioning Technology Solution
3.1.20 Waymo’s High-precision Positioning Technology Solution
3.1.21 WM Motor’s High-precision Positioning Technology Solution
3.1.22 Honda’s High-precision Positioning Technology
3.2 Use Scenario: High-precision Positioning Technology for Low-speed Autonomous Vehicle
3.2.1 Status Quo of Positioning Technology for Low-speed Autonomous Vehicle
3.2.2 Main Positioning Solutions for Low-speed Autonomous Vehicle
3.2.3 Application of Some Positioning Technology Solutions in Low-speed Autonomous Vehicle
3.2.4 High-precision Positioning Solution for Low-speed Autonomous Vehicle: Meituan
3.3 Use Scenario: High-precision Positioning Technology for Autonomous Specialty Vehicle
3.3.1 Current Positioning Technology for Autonomous Driving of Specialty Vehicle (I)
3.3.2 Current Positioning Technology for Autonomous Driving of Specialty Vehicle (II)
3.3.3 Main High-precision Positioning Technology Solutions for Driverless Agricultural Vehicle
3.3.4 Main High-precision Positioning Technology Solutions for Driverless Mining Vehicle
3.3.5 Main High-precision Positioning Technology Solutions for Driverless Sanitation Vehicle
3.4 Forecast of Key Market Segments’ Size
3.4.1 Output Value of China Satellite Navigation and LBS (Location Based Service) Industry
3.4.2 China Satellite Navigation and LBS (Location Based Service) Industry Chain Value
3.4.3 Output Value of China High-precision GNSS Positioning Market
3.4.4 Estimation of High-precision Positioning Installations to Autonomous Vehicles in China, 2021
3.4.5 Market Size of High-precision Positioning for Passenger Cars in China, 2020-2025E
3.4.6 Market Size of High-precision Positioning for Low-speed Autonomous Vehicle in China, 2020-2025E
3.4.7 Market Size of High-precision Positioning for Autonomous Commercial Vehicle in China, 2020-2025E
3.4.8 Market Size of High-precision Positioning Modules for Autonomous Driving in China, 2020-2025E

Chapter 4 Signal-based Positioning Industry and Suppliers
4.1 Progress of Signal-based Positioning Technology
4.1.1 Evolution of Satellite-based Positioning Technology
4.1.2 The Principle of Implementing High-precision Satellite Positioning
4.1.3 Satellite Timing Synchronization Solutions for Intelligent Connected Vehicle
4.1.4 Satellite Navigation Is the Most Mature Absolute Positioning Solution
4.1.5 Fusion of Smart In-vehicle Application with GNSS Technology
4.1.6 5G Positioning
4.1.7 UWB Positioning
4.2 Development Trend of Signal-based Positioning Technology
4.2.1 A-GNSS Technology
4.2.2 Access of High-precision Positioning Service to IVI
4.2.3 Dual-frequency & Full-frequency GNSS at a Gallop (I)
4.2.4 Dual-frequency & Full-frequency GNSS at a Gallop (II)
4.3 Satellite Positioning Onboard Solutions
4.3.1 IVI Positioning Solutions without INS
4.3.2 IVI Positioning Solutions with INS (I)
4.3.3 IVI Positioning Solutions with INS (II)
4.4 Pattern of Signal-based Positioning Suppliers
4.4.1 Signal-based Positioning Industry Chain
4.4.2 Supply Mode of Signal-based Positioning Suppliers
4.4.3 Pattern of Signal-based Positioning Technology Companies
4.4.4 Comparison of Products between Signal-based Positioning Technology Companies
4.4.5 High-precision Positioning Technology Solution of the Supplier: Qianxun SI
4.4.6 High-precision Positioning Technology Solution of the Supplier: Hi-Target
4.4.7 Technical Trend of Qianxun SI
4.4.8 Technical Trend of Sixents Technology
4.4.9 Technical Trend of Unicore Communications
4.4.10 Technical Trend of KunChen Technology
4.5 Qianxun SI
4.5.1 Profile
4.5.2 Development History
4.5.3 Efforts in High-precision Positioning for Autonomous Driving
4.5.4 Core Competitiveness
4.5.5 FindAUTO Product Solution
4.5.6 Terrestrial-Satellite SSR Service
4.5.7 Cloud-Vehicle Integrated Function Safety and Integrity
4.5.8 GNSS/INS Tightly-coupled Technology
4.5.9 Multi-modal Matching with Vehicle Architecture
4.5.10 All-round Testing System
4.5.11 High-precision Positioning Solution for Autonomous Driving
4.5.12 High-precision Positioning Solution for Telematics
4.5.13 High-precision Positioning Solution for Low-speed Autonomous Vehicle
4.5.14 High-precision Positioning Solution for AVP
4.5.15 Indoor and Outdoor Integrated LBS Solution
4.5.16 Main Partners
4.5.17 Main OEM Clients
4.6 Unicore Communications, Inc.
4.6.1 Profile
4.6.2 Development History
4.6.3 Global Footprints
4.6.4 High-precision Positioning Business
4.6.5 Main Products (I)
4.6.6 Main Products (II)
4.6.7 Main Products (III)
4.6.8 Main Products (IV)
4.6.9 High-precision Chip NebulasIV
4.6.10 In-vehicle High-precision Positioning Modules (I)
4.6.11 In-vehicle High-precision Positioning Modules (II)
4.6.12 Application Mode of Standard Precision Positioning Module
4.6.13 IC+ Cloud Technology
4.6.14 Application of High-precision Positioning Products
4.7 Hi-Target
4.7.1 Profile
4.7.2 Autonomous Driving Capital Layout
4.7.3 Status Quo of Positioning Technology Business
4.7.4 Global Layout of Integrated Navigation
4.7.5 Hi-RTP Global Positioning Service Technology Solution
4.7.6 Hi-RTP Global Positioning Service Construction Planning and Product Mass Production Solution
4.7.7 In-vehicle Positioning Solution
4.7.8 Mass Production of High-precision Positioning Products
4.7.9 Collaborations/Customers
4.8 Sixents Technology
4.8.1 Profile 
4.8.2 Product Lineup
4.8.3 CORS Station Network
4.8.4 Network Coverage
4.8.5 Cloud Service Platform
4.8.6 A-GNSS Technology
4.8.7 Differential SDK Product
4.8.8 WithAuto High-precision Positioning Engine
4.8.9 Locate-CM Intelligent Driving Solution
4.8.10 Position Deflection Monitoring Solution
4.8.11 PPK Products
4.8.12 PPP-RTK Products
4.8.13 High-precision Positioning Solution
4.8.14 Use of Positioning Technology
4.9 China Mobile
4.9.1 Efforts in High-precision Positioning
4.9.2 5G+BeiDou High-precision Fusion Positioning
4.9.3 China Mobile’s Integrated Positioning Architecture
4.9.4 Main Partners
4.10 UniStrong
4.10.1 Profile
4.10.2 Development History
4.10.3 High-precision Business
4.10.4 BeiDou Navigation Autonomous Agricultural Machinery System 
4.11 ALLYSTAR Technology
4.11.1 Profile
4.11.2 In-vehicle Positioning Products
4.11.3 GNSS+INS High-precision Communication and Navigation Integrated Module
4.12 ComNav Technology
4.12.1 Profile
4.12.2 Main Products (for Intelligent Vehicle)
4.12.3 Launch of K8-U70 GNSS Communication and Navigation Kit
4.12.4 High-precision Positioning Technology Solution
4.12.5 Agricultural Vehicle Self-driving System
4.13 BroadGNSS Technology
4.13.1 Profile
4.13.2 RAC Positioning Technology
4.13.3 In-vehicle Positioning Products
4.13.4 Product Application
4.14 KunChen Technology
4.14.1 Profile
4.14.2 Main Product Solutions
4.14.3 Hawk-eye Positioning System
4.14.4 UWB-based Positioning Technology Solution for AVP
4.14.5 High-precision Positioning Technology
4.14.6 AVP Technology Ecosystem Route
4.14.7 In-vehicle High-precision Solution
4.14.8 Integrated Positioning Inside and Outside Tunnels
4.14.9 Collaborations/Customers
4.15 Chengdu Jingwei Technology
4.15.1 Profile
4.15.2 UWB Positioning Technology
4.15.3 Search ME Positioning System
4.15.4 Positioning Platform
4.15.5 Application of In-vehicle Positioning Technology
4.16 Mitsubishi Electric
4.16.1 Positioning Business 
4.16.2 Technical Characteristics of High-precision Positioning
4.16.3 CLAS Service
4.16.4 Technical Application - xAUTO
4.17 Swift Navigation
4.17.1 Profile
4.17.2 Development Summary for 2021
4.17.3 Piksi Multi & Duro GPS Receivers
4.17.4 SwiftPath TM with Quectel 
4.17.5 Swift Starling Positioning Engine
4.17.6 Skylark Precision Positioning Service
4.18 Septentrio
4.18.1 Profile 
4.18.2 Main Products (I)
4.18.3 Main Products (II)
4.18.4 Collaborations/Customers
4.19 Others
4.19.1 PNI Sensor’s Positioning Business
4.19.2 NXP’s UWB Positioning Business

Chapter 5 INS Positioning Industry and Suppliers
5.1 Pattern of INS Positioning Suppliers
5.1.1 INS Architecture
5.1.2 Usual Combination of INS with GNSS
5.1.3 Main players in the Industrial Chain of Dead Reckoning-based Positioning Technology
5.1.4 Supply Mode of INS Positioning Suppliers
5.1.5 Comparison of Products between INS Positioning Technology Firms (I)
5.1.6 Comparison of Products between INS Positioning Technology Firms (II)
5.2 ADI
5.2.1 Profile
5.2.2 Inertial Navigation Business (I)
5.2.3 Inertial Navigation Business (II)
5.2.4 Inertial Navigation Product: ADIS16490
5.2.5 Collaborations/Application
5.3 DAISCH
5.3.1 Product
5.3.2 Product Lineup
5.3.3 Main Products (I)
5.3.4 Main Products (II)
5.3.5 Key Features of Products and Commercialization Route
5.3.6 Electrical Architecture of P-BOX
5.4 Beijing Xilang Technology
5.4.1 Profile
5.4.2 GNSS+IMU Products for Autonomous Driving
5.4.3 Self-driving Vehicle Solution
5.5 StarNeto
5.5.1 Main Products
5.5.2 Integrated Navigation Technology
5.6 Asensing Technology
5.6.1 Positioning Business
5.6.2 Positioning Technologies
5.6.3 Asensing’s Automotive-grade Integrated Navigation Positioning System
5.6.4 Asensing’s Positioning Assembly
5.7 Others
5.7.1 INS Products of UniStrong
5.7.2 INS Products of Honeywell
5.7.3 Honeywell HGuide n380 INS
5.7.4 Six-axis Onboard Inertial Sensors of Panasonic

Chapter 6 Integrated Positioning Industry and Suppliers
6.1 Integrated Positioning Technologies
6.1.1 Integrated Positioning System in Autonomous Driving System Architecture
6.1.2 Integrated Positioning Terminal System Architecture
6.1.3 Complementary Advantages of Integrated Positioning
6.1.4 Coupling Way of Integrated Positioning
6.1.5 Loose Coupling Means of GNSS + IMU
6.1.6 Tight Coupling Means of GNSS + IMU
6.1.7 Deep Coupling Means of GNSS + IMU 
6.1.8 Advantages of Deep-coupled GNSS + IMU Positioning Technology
6.1.9 Algorithms Affect the Accuracy of GNSS + IMU
6.1.10 IMU Is Crucial to the Integrated Positioning System
6.1.11 ‘GNSS+IMU’ Navigation Gets Increasingly Used
6.2 Company Pattern of Integrated Positioning Technology 
6.2.1 Leading Players in Integrated Positioning Technology Industry Chain
6.2.2 Supply Modes of Integrated Positioning Technology Suppliers
6.2.3 Comparison of Products between Integrated Positioning Technology Suppliers (I)
6.2.4 Comparison of Products between Integrated Positioning Technology Suppliers (II)
6.2.5 Suppliers’ Technology Trends: Baidu Apollo
6.2.6 Suppliers’ Technology Trends: StarCart
6.2.7 Suppliers’ Technology Trends: BYNAV Technology
6.3 Trimble Navigation
6.3.1 Profile
6.3.2 Positioning Modules for Production Cars
6.3.3 Automotive High-precision Positioning Software
6.3.4 RTX Technology
6.3.5 RTX Satellite Coverage Network
6.3.6 High-precision Positioning Solutions for Production Cars
6.3.7 Collaborations/Customers
6.4 Qualcomm
6.4.1 Vision Enhanced Precise Positioning (VEPP)
6.4.2 Qualcomm Lane-level Positioning Terminals
6.5 BDStar Navigation
6.5.1 Profile
6.5.2 Main Products
6.5.3 Navigation Products Business Segment
6.5.4 Inertial Navigation Products
6.5.5 In-vehicle Positioning Product Layout
6.5.6 Product Application
6.6 BDStar Intelligent & Connected Vehicle Technology (BiCV)
6.6.1 Profile
6.6.2 Core Technical Superiorities
6.6.3 BiCV High-precision Fusion Positioning Assembly
6.7 CHC Navigation
6.7.1 Profile
6.7.2 Main Products
6.7.3 P2 High-precision MEMS GNSS+IMU System
6.7.4 Sufficient Technical Reserves for GNSS+IMU Integration
6.7.5 Product Application in Autonomous Driving
6.8 Sand Canyon Technology
6.8.1 GNSS + IMU Module (I)
6.8.2 GNSS + IMU Module (II)
6.8.3 GNSS + IMU Module (III)
6.8.4 GNSS + IMU System (I)
6.8.5 GNSS + IMU System (II)
6.9 StarCart
6.9.1 Profile
6.9.2 Next-generation Positioning Technology
6.9.3 Lane-level Precise Positioning and Tracking Solutions
6.9.4 L3/L4 OEM Onboard High-precision Positioning Solutions
6.9.5 High-precision Positioning Solutions for Telematics
6.9.6 Positioning Terminals for Specialty Vehicle
6.10 Baidu
6.10.1 Baidu Self-driving Car Positioning Technologies
6.10.2 Intelligent Positioning Technology Engine
6.10.3 Apollo Latest Positioning Technology Framework
6.10.4 Positioning System: Multi-sensor Fusion Positioning System Architecture
6.10.5 Positioning System: Point Cloud Positioning Algorithm Architecture
6.10.6 Positioning System: GNSS RTK Positioning
6.10.7 Positioning System: INS Calculation
6.10.8 Positioning System: Multi-module Fusion
6.10.9 Vehicle Positioning Optimization & Improvement Method
6.10.10 Deep Learning-based Laser Point Cloud Self-localization Technology L3-Net
6.11 BYNAV Technology
6.11.1 Profile
6.11.2 Automotive-grade GNSS+IMU Products
6.11.3 High-precision Positioning and Heading Board C1
6.11.4 High-precision GNSS+IMU Board A1
6.11.5 High-precision GNSS+IMU Module M1
6.11.6 High-precision GNSS+IMU System X1
6.11.7 High-precision GNSS+IMU System X2
6.11.8 GNSS High-precision Baseband Chip - Alita
6.12 Azimuth Technology
6.12.1 Profile
6.12.2 Main Products
6.13 Desay SV Automotive
6.13.1 High-precision Positioning Technology
6.13.2 Application of High-precision Positioning Solutions
6.14 JOYNEXT
6.14.1 Integrated Positioning Integration Solution

Chapter 7 Basic Positioning Technology Industry and Suppliers
7.1 u-blox
7.1.1 Profile
7.1.2 Business Line and Product Technology Roadmap
7.1.3 Main Positioning Products (1)
7.1.4 Main Positioning Products (2)
7.1.5 Main Positioning Products (3)
7.1.6 GNSS Positioning Products and Features
7.1.7 GNSS Positioning Product Parameters 
7.1.8 ZED-F9P GNSS Positioning Module
7.1.9 NEO-D9S Module
7.1.10 Launch of Bran-new Onboard Positioning Module
7.1.11 Global GNSS Correction Service
7.1.12 Exclusive Acquisition of Sapcorda
7.1.13 GNSS Integration Platform: M9 & M10
7.1.14 Product Application
7.2 STMicroelectronics
7.2.1 Profile
7.2.2 High-precision Positioning Chip
7.2.3 Teseco Series
7.2.4 Teseco APP
7.2.5 Automotive Satellite Navigation Chip
7.2.6 High-precision Positioning Module
7.2.7 Inertial Sensor ASM330LHH
7.2.8 UWB Business
7.3 InvenSense
7.3.1 Profile
7.3.2 Hit Product: InvenSense Coursa Drive Software
7.3.3 Hit Product: Smart Automotive? Sensor
7.3.4 Hit Product: IAM-20380 High-performance Gyroscope
7.4 Bosch
7.4.1 Positioning Business
7.4.2 High-precision Positioning Solution
7.4.3 Intelligent Sensors for Satellite Positioning
7.4.4 INS Sensors (I)
7.4.5 INS Sensors (II)
7.5 Novatel
7.5.1 Profile
7.5.2 Main Products
7.5.3 Launch of New High-precision Integrated Navigation Modules
7.5.4 SPAN INS Configurations and Level 1 System
7.5.5 SPAN INS Level 2/3 System
7.5.6 Application Cases
7.6 Quectel
7.6.1 Profile
7.6.2 Main Products (1)
7.6.3 Main Products (2)
7.6.4 Main Products (3)
7.6.5 Main Products (4)
7.6.6 Collaborations
7.7 Others
7.7.1 Simple’s Dual-frequency RTK Precise Positioning Module
7.7.2 SKYLAB Put Forward Dual-frequency Multi-modal High-precision Module
7.7.3 UNISOC’s Automotive-grade High-precision Dual-frequency Positioning Chip A2395
 

In-vehicle Payment and ETC Market Research Report, 2024

Research on in-vehicle payment and ETC: analysis on three major application scenarios of in-vehicle payment In-vehicle payment refers to users selecting and purchasing goods or services in the car an...

Automotive Audio System Industry Report, 2024

Automotive audio systems in 2024: intensified stacking, and involution on number of hardware and software tuning   Sales of vehicle models equipped with more than 8 speakers have made stea...

China Passenger Car Highway & Urban NOA (Navigate on Autopilot) Research Report, 2024

NOA industry research: seven trends in the development of passenger car NOA In recent years, the development path of autonomous driving technology has gradually become clear, and the industry is acce...

Automotive Cloud Service Platform Industry Report, 2024

Automotive cloud services: AI foundation model and NOA expand cloud demand, deep integration of cloud platform tool chainIn 2024, as the penetration rate of intelligent connected vehicles continues to...

OEMs’ Passenger Car Model Planning Research Report, 2024-2025

Model Planning Research in 2025: SUVs dominate the new lineup, and hybrid technology becomes the new focus of OEMs OEMs’ Passenger Car Model Planning Research Report, 2024-2025 focuses on the medium ...

Passenger Car Intelligent Chassis Controller and Chassis Domain Controller Research Report, 2024

Chassis controller research: More advanced chassis functions are available in cars, dozens of financing cases occur in one year, and chassis intelligence has a bright future.  The report combs th...

New Energy Vehicle Thermal Management System Market Research Report, 2024

xEV thermal management research: develop towards multi-port valve + heat pump + liquid cooling integrated thermal management systems. The thermal management system of new energy vehicles evolves fro...

New Energy Vehicle Electric Drive and Power Domain industry Report, 2024

OEMs lead the integrated development of "3 + 3 + X platform", and the self-production rate continues to increase The electric drive system is developing around technical directions of high integratio...

Global and China Automotive Smart Glass Research Report, 2024

Research on automotive smart glass: How does glass intelligence evolve  ResearchInChina has released the Automotive Smart Glass Research Report 2024. The report details the latest advances in di...

Passenger Car Brake-by-Wire and AEB Market Research Report, 2024

1. EHB penetration rate exceeded 40% in 2024H1 and is expected to overshoot 50% within the yearIn 2024H1, the installations of electro-hydraulic brake (EHB) approached 4 million units, a year-on-year ...

Autonomous Driving Data Closed Loop Research Report, 2024

Data closed loop research: as intelligent driving evolves from data-driven to cognition-driven, what changes are needed for data loop? As software 2.0 and end-to-end technology are introduced into a...

Research Report on Intelligent Vehicle E/E Architectures (EEA) and Their Impact on Supply Chain in 2024

E/E Architecture (EEA) research: Advanced EEAs have become a cost-reducing tool and brought about deep reconstruction of the supply chain The central/quasi-central + zonal architecture has become a w...

Automotive Digital Power Supply and Chip Industry Report, 2024

Research on automotive digital power supply: looking at the digital evolution of automotive power supply from the power supply side, power distribution side, and power consumption side This report fo...

Automotive Software Business Models and Suppliers’ Layout Research Report, 2024

Software business model research: from "custom development" to "IP/platformization", software enters the cost reduction cycle According to the vehicle software system architecture, this report classi...

Passenger Car Intelligent Steering Industry Research Report, 2024

Intelligent Steering Research: Steer-by-wire is expected to land on independent brand models in 2025 The Passenger Car Intelligent Steering Industry Research Report, 2024 released by ResearchInChina ...

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024

China Passenger Car Mobile Phone Wireless Charging Research Report, 2024 highlights the following:Passenger car wireless charging (principle, standards, and Qi2.0 protocol);Passenger car mobile phone ...

Automotive Smart Exteriors Research Report, 2024

Research on automotive smart exteriors: in the trend towards electrification and intelligence, which exteriors will be replaced by intelligence The Automotive Smart Exteriors Research Report, 2024 r...

Automotive Fragrance and Air Conditioning System Research Report, 2024

Research on automotive fragrance/air purification: With surging installations, automotive olfactory interaction is being linked with more scenarios. As users require higher quality of personalized, i...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号