Automotive Sensor Chip Industry Report, 2023
  • May 2023
  • Hard Copy
  • USD $4,700
  • Pages:360
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: ZHP129
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution.

At the Auto Shanghai 2023, "more weight on perception, less weight on maps", "urban NOA", and "BEV+Transformer" abounded of OEMs and Tier 1 suppliers. It can be seen that major manufacturers have turned to the technology route of "more weight on perception, less weight maps", to speed up their layout of urban NOA and break their dependence on HD maps.

Driven by the "more weight on perception" technology route, automotive sensors play a more important role. New products like LiDAR, 4D imaging radar, and 8MP CMOS image sensor (CIS) are quickly applied in vehicles, pushing up the demand for sensor chips. Automotive sensor and chip technologies are entering a new stage of rapid iterative evolution and fast cost reduction.

传感器芯片 1_副本.png

Radar chip: Chinese vendors have made breakthroughs and broken overseas monopoly.

The automotive radar chip market is dominated by such companies as NXP, Infineon, and TI; among Chinese vendors, Calterah Semiconductor as an early starter has forged partnerships with more than 20 automotive OEMs, on designated projects for over 70 passenger car models, and has shipped a total of over 3 million pieces, one third of which were to overseas customers.

传感器芯片 2_副本.png

4D radars rapidly penetrate into mid- and high-end models and autonomous models. OEMs such as BMW and GM, and Tier 1 suppliers like Continental and ZF have completed the layout in this field. Quite a few Chinese brands including Li Auto, Changan, BYD, Tesla and Geely have designated or spawned and applied 4D radars. HW4.0, Tesla’s next-generation autonomous driving platform equipped with a "Phoenix" 4D imaging radar, has become a tipping point in market.

In the field of conventional radar chips, Infineon and NXP are almost in a monopoly position. As the main development direction of radars, 4G imaging radars can better serve advanced autonomous driving functions such as urban NOA. Chinese manufacturers are also expediting layout of 4D radar chips.

Calterah: in December 2022, announced Andes, its next-generation new radar SoC family that enables 4D imaging radar functions and promotes the development of L3+ autonomous driving, with the following key features:

  • 4T4R SoC using 22nm process
    Multi-core CPU, including DSP (digital signal processor) and RSP (radar signal processor)
    Gigabit Ethernet with RGMII/SGMII
    Support for flexible cascading
    Subject to ASIL-B & AEC-Q100 Grade 1 requirements

传感器芯片 3.png

Muye Microelectronics: a 4D radar start-up specializes in 4D high-precision imaging radars. In December 2022, it successfully developed the first 77G radar chip; in March 2023, passed the "1S0-26262 ASL-D functional safety certification"; in April 2023, closed the Pre-A funding round and raised RMB100 million, which is spent for chip productization, and production and delivery to Alpha customers.

LiDAR chip: develop towards SoC integration.

Since 2022, much more LiDARs have been used in vehicles, and about 164,000 passenger cars have been installed with LiDARs in China. LiDARs are often used in L2+++ passenger cars (with the highway + urban NOA function), most of which are high-end new energy vehicles valued at over RMB250,000. It is estimated that in 2026, 3.666 million LiDARs will be installed in passenger cars in China. If LiDARs are mounted on RMB150,000 passenger cars, a bigger cost reduction will be required. This may be hard to achieve in the short run.

In 2023, the LiDAR price war has begun, and the shipping price has slumped to around USD500, but still relatively high compared to the price (USD200-300) of 4D radars. Based on SoCs, LiDARs will be further integrated and become cheaper.

(1) Integration with transceiver chips

The wide adoption of LiDARs in vehicles first needs cost control. Different LiDAR routes of manufacturers lead to differential costs. Yet transceiver chips are the main cost component. The integration with transceiver chips is an effective way to cut down the cost of LiDARs.

Transmitter chip: replacing discrete modules with integrated modules can slash the cost of materials and debugging by more than 70%;
Receiver chip: the small size of the SPAD solution favors the integration with the readout circuit, which can further reduce the cost.

传感器芯片 4_副本.png

LiDAR chip technique is mastered by foreign manufacturers, but Chinese vendors have also worked to develop related technologies in recent years. In the case of transmitter chips, Chinese manufacturers have begun to step into upstream VCSEL chip design; as concerns receiver chips, Chinese start-ups march into SPAD and SiPM chips, among which QuantaEye and FortSense concentrate their efforts on SPAD/SiPM R&D.

FortSense: it has started deploying SPAD LiDAR chip R&D from 2019. It taped out in 2021, and passed automotive certification in September 2022. It has been favored by designated LiDAR suppliers of over 5 automakers. In December 2022, it closed the C funding round, with the raised funds to be used to develop LiDAR chips.

传感器芯片 5_副本.png

Hesai Technology: in recent years, it has been committed to developing LiDAR chips. Hesai Technology has started developing LiDAR SoCs since 2018, and has made the strategy for developing multiple generations of chip-based transceivers (V1.0, V1.5, V2.0, V3.0, etc.). Wherein, for V2.0, the receiving end is upgraded from SiPM to SPAD array for integration of detectors and circuit function modules under the CMOS technology; as for the V3.0 architecture, it is expected to complete the development of the VCSEL area array driver chip and the area array SoC based on SPAD detector.

Hesai’s long-range semi-solid-state LiDAR AT128: it is equipped with a self-developed automotive chip. A single circuit board integrates 128 scanning channels for chip-based solid-state electronic scanning.
Hesai’s new-generation all-solid-state gap filler radar FT120: a single chip integrates an area array composed of tens of thousands of laser receiving channels for laser emission and reception completely through the chip. With much fewer components than conventional LiDARs, it is more cost-effective than the AT family. 

传感器芯片 6_副本.png

(2) Single-chip LiDAR solution

LiDAR cost reduction needs to use the photonic integration process to integrate various optoelectronic devices, which is evolving from heterogeneous materials integration to single-chip integration, a process to slot the prepared silicon wafer to the monocrystalline silicon substrate, and then grow the group III-V materials on the monocrystalline silicon substrate in an epitaxial way. Despite high difficulty, the process offers benefits of low loss, easy to package, high reliability, and high integration.

In early 2023, Mobileye demonstrated its next-generation FMCW LiDAR for the first time. To be precise, it is a LiDAR SoC with a wavelength of 1320nm. Based on Intel's chip-level silicon photonics process, this product can measure distance and speed at the same time.

The chip-based silicon photonics FMCW solid-state LiDAR technology route may become a preferred direction in future LiDAR development, involving such key technologies as FMCW, solid-state dispersion scanning and silicon photonics. As a new technology route, FMCW LiDAR still poses a lot of technical challenges. In addition to foreign manufacturers like Mobileye, Aeva and Aurora, Chinese vendors such as Inxuntech and LuminWave have also made deployments.

Vision sensor chips: giants race to lay out 8MP products.

Automotive camera hardware includes lens, CIS and image signal processor (ISP). Thereof, automotive CIS with a high entry threshold is an oligopolistic market in which dominant competitors include ON Semiconductor, OmniVision and Sony. In the future the products will tend to have high pixel and high dynamic range (HDR). As well as conventional ISPs, the current ISP integrated solutions also integrate ISP into CIS or SOC.

CIS develops towards high pixel.

The development of high-level autonomous driving requires increasingly high imaging quality of automotive cameras. Generally speaking, the higher the pixel of cameras, the better the imaging quality and the more useful information automakers/autonomous driving providers can get. The pace of using 8MP cameras in vehicles quickens. Xpeng P7i launched in early 2023 packs an 8MP camera for intelligent driving assistance solutions.

Front view is the application scenario with the most urgent need for 8MP high-resolution cameras. Currently, mainstream automotive CIS suppliers have successfully deployed 8MP CIS products.

传感器芯片 7_副本.png

SmartSens: it announced SC850AT in November 2022. This sensor product supports 8.3MP resolution, and adopts SmartSens SmartClarity?-2 innovative imaging technology architecture and the upgraded self-developed Raw domain algorithms that can effectively protect image details and improve overall image effects. In addition to Staggered HDR, it also supports SmartSens’ unique PixGain HDR? technology to achieve 140dB HDR, and can capture more accurate image information, ensuring its ability to accurately capture details in brightness and darkness in complex lighting conditions.

The volume production of the chip is scheduled in the second quarter of 2023.

传感器芯片 8_副本.png

ISP: evolve towards integration.

There are two types of ISP solutions: independent and integrated. Wherein, independent ISPs are powerful but with high cost, while integrated ISPs have the benefits of low cost, small area and low power consumption but with relatively weak processing capabilities. In recent years major vendors have vigorously deployed ISP-integrated SOC in addition to ISP-integrated CIS.

ISP-integrated CIS: the integration of ISP into CIS can achieve the aim of saving space and reducing power consumption. It is mainly some CIS leaders that introduce relevant solutions. In January 2023, OmniVision announced its new 1.3-megapixel (MP) OX01E20 system-on-chip (SoC) for automotive 360?degree surround view systems (SVS) and rear-view cameras (RVC). The OX01E20 brings top-of-the-line LED flicker mitigation (LFM) and 140db high dynamic range (HDR) capabilities. It features a 3?micron image sensor, an advanced image signal processor (ISP), and full-featured distortion correction/perspective correction (DC/PC) and on-screen display (OSD).

传感器芯片 9.png

ISP-integrated SOC: the way of removing the ISP from the CIS and directly integrating it into the main control SoC for autonomous driving enable a big reduction in the cost of perception hardware, and the removal of the ISP from the camera can not only solve the serious problem of heat dissipation caused by high-pixel cameras, but also help to further reduce circuit board size and power consumption for automotive cameras. Almost all autonomous driving domain control SoCs integrate the ISP module.

Automotive Sensor Chip Industry Report, 2023 highlights the following:
20120114.gifAutomotive sensor chip industry (overview, formulation of industrial policies and standards, market size, etc.);
20120114.gifMain automotive sensor chip industry segments (automotive camera chip, radar chip, LiDAR chip, etc.) (product structure, technology trends, market size, market pattern, etc.)
20120114.gifMain automotive radar chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
20120114.gifMain automotive LiDAR chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
20120114.gifMain automotive vision sensor chip suppliers (product line layout, performance of main products, development of new products, product application, etc.).

1 Overview of Autonomous Driving Sensor Chip Industry
1.1 Overview of Automotive Autonomous Driving Sensor Chips
1.1.1 Types of Autonomous Driving Sensor Chips
1.1.2 Process of Applying Autonomous Driving Sensor Chips in Vehicles 
1.1.3 Installation Scale of Autonomous Driving Sensor Chips in Vehicles
1.2 Industrial Policies and Standards
1.2.1 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (1)
1.2.2 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (2)
1.2.3 Certification Thresholds for Automotive Chips

2 Radar Chip Industry 
2.1 Overview of Radar Industry
2.1.1 Workflow of Automotive Radar
2.1.2 Implementation Mode 1 of Radars in Vehicles: OEMs That Rely on External Integration Continue Their Close Coupling Relationships with Chip Vendors
2.1.3 Implementation Mode 2 of Radars in Vehicles: Mighty Automakers Directly Procure Hardware and Outsource the Assembly 
2.1.4 Major OEMs in Automotive Radar Industry Chain (1)
2.1.5 Major OEMs in Automotive Radar Industry Chain (2)
2.2 Radar Structure
2.2.1 Structure Diagram of Automotive Radar
2.2.2 Cost Structure of Automotive Radar
2.2.3 Price of Automotive Radar Chip (MICC)
2.2.4 Autonomous Driving Sensor Chip Industry Chain: Radar Chip
2.3 Application Trends of Radar Chips
2.3.1 Intelligent Driving Market Provides A Big Boost to the Demand for Radars and Chips 
2.3.2 Technical Requirements for Radar Chips: High Precision, High Power, High Sensitivity
2.3.3 Development Directions of Automotive Radar Chips
2.3.4 Development Direction 1 of Automotive Radar Chips: Chip Integration
2.3.5 Development Direction 2 of Automotive Radar Chips: Policies Facilitate the Development of High-frequency Radar Chips
2.3.6 Development Direction 3 of Automotive Radar Chips: 4D radar
2.3.7 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (1)
2.3.8 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (2)
2.4 Application Trends of 4D Radar Chips
2.4.1 Automotive 4D Radar Chip Technology Route 
2.4.2 Automotive 4D Radar Chip Packaging and Testing Schemes 
2.4.3 Technology Trends of Automotive 4D Radar Chips 
2.4.4 4D Radar Chip Installation Scheme 1: Cascading (1)
2.4.5 4D Radar Chip Installation Scheme 1: Cascading (2)
2.4.6 4D Radar Chip Installation Scheme 2: Single-chip Integration 
2.4.7 4D Radar Chip Installation Scheme 3: Software Algorithm Support
2.4.8 Comparison between 4D Radar Chip Installation Schemes
2.4.9 Mainstream Automotive 4D Radar Chip Suppliers (1)
2.4.10 Mainstream Automotive 4D Radar Chip Suppliers (2)
2.4.11 Mainstream Automotive 4D Radar Chip Suppliers (3) 
2.5 Radar Chip Market Size and Pattern
2.5.1 China's Demand for Passenger Car Radars, 2021-2026E
2.5.2 China's Passenger Car Radar Chip Market Size, 2021-2026E
2.5.3 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (1) 
2.5.4 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (2) 
2.5.5 Automotive Radar Chip Market Structure 
2.5.6 Automotive Radar Chip Market Structure: Suppliers Accelerate the Pace of Localization   
2.5.7 Automotive Radar Chip Market Structure: Chinese Suppliers (1)
2.5.8 Automotive Radar Chip Market Structure: Chinese Suppliers (2)

3 LiDAR Chip Industry 
3.1 Overview of LiDAR Industry
3.1.1 Workflow of LiDAR 
3.1.2 LiDAR Industry Chain
3.1.3 LiDAR OEM Model
3.1.4 LiDAR OEM: MEMS Galvanometer OEM
3.1.5 Major OEMs in LiDAR Industry Chain (1)
3.1.6 Major OEMs in LiDAR Industry Chain (2)
3.2 LiDAR Products and Cost Structure
3.2.1 Structure Diagram of Automotive LiDAR
3.2.2 Main Components of Automotive LiDAR (1)
3.2.3 Main Components of Automotive LiDAR (2)
3.2.4 Major Players in LiDAR Transmitter VCSEL Chip Market
3.2.5 Major Players in LiDAR Receiver SPAD/SiPM Chip Market
3.2.6 Cost Structure of Automotive LiDAR
3.2.7 Automotive LiDAR Chip Industry Chain
3.3 Technology Trends of LiDAR Chips
3.3.1 LiDAR Development Technology Route
3.3.2 Development Directions of LiDAR Chips
3.3.3 LiDAR Transmitter Chip Technology Trend 1: Develop from EEL to VCSEL Chip 
3.3.4 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (1)
3.3.5 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (2) 
3.3.6 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (1)
3.3.7 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (2) 
3.3.8 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (1)
3.3.9 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (2)
3.3.10 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (1)
3.3.11 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (2)
3.3.12 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (3) 
3.3.13 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (1)
3.3.14 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (2)
3.3.15 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (3)
3.3.16 Single-chip LiDAR Layout Case 1 of Suppliers: Hesai Technology
3.3.17 Single-chip LiDAR Layout Case 2 of Suppliers: Ouster
3.4 LiDAR Chip Market Size and Pattern 
3.4.1 China’s Demand for Passenger Car LiDARs, 2021-2026E
3.4.2 China’s Passenger Car LiDAR Chip Market Size, 2021-2026E
3.4.3 China’s Passenger Car LiDAR Chip Market Size, 2021-2026E - Attached Table (2)
3.4.4 Competitive Pattern of LiDAR Chip Market
3.4.5 Mainstream Automotive LiDAR Chip Suppliers (1)
3.4.6 Mainstream Automotive LiDAR Chip Suppliers (2)
3.4.7 Layout of Chinese Suppliers in Laser Sensor Chips: Stepping into the Upstream End of VCSEL Chips
3.4.8 Layout of Chinese Suppliers in Laser Sensor Chips: Marching into SPAD and SiPM Chips

4 Vision Sensor Chip Industry 
4.1 Overview of Automotive Camera Industry
4.1.1 Structure of Automotive Camera
4.1.2 Implementation Mode of Cameras in Vehicles
4.1.3 Major OEMs in Automotive Camera Industry Chain (1)
4.1.4 Major OEMs in Automotive Camera Industry Chain (2) 
4.1.5 Autonomous Driving Sensor Chip Industry Chain: Types of 
Vision Chips
4.1.6 Cost Structure of Automotive Camera
4.1.7 China’s Demand for Passenger Car Cameras, 2021-2026E
4.1.8 China's Passenger Car Camera Chipset Market Size, 2021-2026E
4.1.9 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (1) 
4.1.10 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (2) 
4.2 Automotive Camera CIS Chip 
4.2.1 Demand for Automotive Camera CIS Keeps Increasing
4.2.2 Automotive CIS Shipment Structure 
4.2.3 Automotive CIS Market Features High Entry Threshold and Oligarchic Competition 
4.2.4 Automotive CIS Market Pattern (1)
4.2.5 Automotive CIS Market Pattern (2)
4.2.6 Automotive CIS Market Pattern (3) 
4.2.7 Automotive CIS Market Pattern: Chinese Manufacturers Accelerate Product Layout 
4.2.8 Comparison between Main Automotive CIS Products
4.2.9 Development Directions of Automotive CIS Technology
4.2.10 Development Direction 1 of Automotive CIS Technology: Higher Resolution (1)
4.2.11 Development Direction 1 of Automotive CIS Technology: Higher Resolution (2)
4.2.12 Development Direction 2 of Automotive CIS Technology: Higher Dynamic Range
4.3 Automotive Camera ISP 
4.3.1 Automotive ISP Fusion Modes
4.3.2 Competition Pattern of Automotive ISP Market
4.3.3 Development Directions of Automotive ISP
4.3.4 Development Direction 1 of Automotive ISP: Introduction of AI Algorithms
4.3.5 Development Direction 2 of Automotive ISP: Integration of ISP into SoC
4.3.6 Case 1 of Automotive ISP Integrated into Autonomous Driving SOC: TI
4.3.7 Case 2 of Automotive ISP Integrated into Autonomous Driving SOC: Mobileye
4.3.8 Case 3 of Automotive ISP Integrated into Autonomous Driving SOC: Black Sesame Technologies 
4.3.9 Case 4 of Automotive ISP Integrated into Autonomous Driving SOC: Horizon Robotics 
4.3.10 Case 5 of Automotive ISP Integrated into Autonomous Driving SOC: Ambarella

5 Radar Chip Suppliers 
5.1 Infineon
5.1.1 Autonomous Driving Sensor Chip Product Line
5.1.2 Radar Chips
5.1.3 24GHz Radar Chips: BGT24XX Series (1)
5.1.4 24GHz Radar Chips: BGT24XX Series (2)
5.1.5 77GHz Radar Chips
5.1.6 77GHz Radar Microcontroller
5.2 NXP
5.2.1 Autonomous Driving Sensor Chip Product Line
5.2.2 Radar Chip Business
5.2.3 4D Imaging Radar Chip: S32R45
5.2.4 77GHz Radar Transceiver Chips: TEF82xx
5.2.5 77GHz Radar Transceiver Chips: TEF810X
5.2.6 77GHz Radar Transceiver Chips: MR3003
5.2.7 Radar Solutions
5.2.8 Application of Autonomous Driving Sensor Chips: Continental’s 4-cascade Radar
5.3 STMicroelectronics
5.3.1 Autonomous Driving Sensor Chip Product Line
5.3.2 24GHz Radar Chips
5.3.3 77GHz Radar Chip: STRADA770M
5.4 TI
5.4.1 Autonomous Driving Sensor Chip Product Line (1)
5.4.2 Autonomous Driving Sensor Chip Product Line (2) 
5.4.3 Radar Chip System
5.4.4 Parameters of Radar Chips
5.4.5 77GHz Radar Chips: AWR1243
4.5.6 77GHz Radar Chips: AWR2243
5.4.7 77GHz Radar Chips: AWR2944
5.4.8 Integrated Radar Chip: AWR1843AoP
5.5 ADI
5.5.1 Autonomous Driving Sensor Chip Product Line
5.5.2 24GHz Radar Chips
5.5.3 Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
5.6 Vayyar
5.6.1 Autonomous Driving Sensor Chip Product Line
5.6.2 Comparison between Radar Products and Alternative Products
5.6.3 Radar SOC 
5.6.4 4D Radars and Chips
5.6.5 60GHz Radar Chips 
5.7 Uhnder
5.7.1 Imaging Radar Chips
5.7.2 Application of Radar Chips
5.8 Arbe
5.8.1 Imaging Radar Chipset Solutions (1)
5.8.2 Imaging Radar Chipset Solutions (2)
5.8.3 Imaging Radar Chipset Application 1: In-house Phoenix Perception Radar
5.8.4 Imaging Radar Chipset Application 2: In-house Lynx Surround Imaging Radar
5.8.5 Imaging Radar Chipset Application 3: In-house 360° Surround Radar
5.8.6 Imaging Radar Chipset Application 4: Cooperation (1)
5.8.7 Imaging Radar Chipset Application 4: Cooperation (2)
5.9 Calterah Semiconductor 
5.9.1 Profile
5.9.2 Platformization and Serialization of Radar Chips Have Been Realized
5.9.3 Automotive Radar Chip Product Line  
5.9.4 Radar Chip Products: Alps-Pro Series
5.9.5 Radar Chip Products: Andes Series
5.9.6 Radar Chip Products: ALPS Series
5.9.7 Radar Chip Products: Alps-Mini Series
5.9.8 Application Scenarios of Radar Chips
5.10 Andar Technologies
5.10.1 Profile
5.10.2 77/79GHz Radar Chips: ADT2011
5.10.3 77/79GHz Radar Chips: ADT2001
5.10.4 77/79GHz Radar Chips: ADT3102
5.10.5 77/79GHz Radar Chips: ADT3101
5.11 SGR Semiconductors
5.11.1 Profile
5.11.2 24GHz Automotive Radar Chip Products
5.11.3 Application of Radar Chips
5.12 Runchip 
5.12.1 77GHz Radar Chips
5.12.2 Domestic Radar Chip Localization Capability 
5.13 Others
5.13.1 76-81GHz Radar Chips of Radaric (Beijing) Technology 
5.13.2 77GHz Radar Chips of Citta Microelectronics

6 LiDAR Chip Suppliers 
6.1 LeddarTech
6.1.1 Profile
6.1.2 Global Network
6.1.3 Automotive LiDAR Technology (1)
6.1.4 Automotive LiDAR Technology (2)
6.1.5 LeddarCore SoCs: LCA2 & LCA3
6.1.6 Products (1): Vu8 Solid State LiDAR Module
6.1.7 Products (2): M16 Solid State LiDAR Module
6.1.8 Products (3): LeddarVision & LeddarSteer
6.1.9 Cooperation Mode
6.1.10 Partners
6.1.11 Partners
6.2 Ouster
6.2.1 Profile
6.2.2 LiDAR Chip Products (1)
6.2.3 LiDAR Chip Products (2)
6.3 Lumentum
6.3.1 Automotive Business Layout
6.3.2 LiDAR Chips
6.4 Mobileye
6.4.1 LiDAR Chip Layout
6.4.2 Benefit from Intel's Silicon Photonics Manufacturing Technology
6.5 Lumotive
6.5.1 Profile
6.5.2 LiDAR Chip Technology
6.6 LuminWave 
6.6.1 LiDAR Chip Technology
6.6.2 LiDAR Chip Technology Upgrade 
6.7 visionICs
6.7.1 Profile
6.7.2 Autonomous Driving Sensor Chip Product Line
6.7.3 Main LiDAR Chip Products (1)
6.7.4 Main LiDAR Chip Products (2) 
6.8 Xilight 
6.8.1 Profile
6.8.2 Autonomous Driving Sensor Chip Product Line
6.8.3 Main LiDAR Chip Products (1): Detection Chip
6.8.4 Main LiDAR Chip Products (2): Signal Receiving SiPM Chip
6.8.5 Main LiDAR Chip Products (3): Digital Conversion Chip - XTD50
6.8.6 Product R&D Dynamics 
6.9 ABAX Sensing 
6.9.1 Profile
6.9.2 LiDAR Chips
6.9.3 Parameters of LiDAR Products
6.9.4 Development Dynamics
6.10 Vertilite 
6.10.1 Profile
6.10.2 LiDAR Chips: CAC940K010
6.10.3 LiDAR Chips: CAC940F005
6.11 Hesai Technology
6.11.1 Self-developed Chip Planning 
6.11.2 Self-developed Chip Planning: Work to Lay out Single-chip Solutions
6.11.3 Scope of Self-developed Chips
6.11.4 Scope of Self-developed Chips
6.11.5 Application of Self-developed Chips
6.12 China Science Photon Chip
6.12.1 Profile
6.12.2 LiDAR Chip Layout
6.13 Fortsense
6.13.1 Profile
6.13.2 LiDAR Chip Business
6.14 DAO Sensing
6.14.1 LiDAR Chip Planning (1)
6.14.2 LiDAR Chip Planning (1)
6.15 Others
6.15.1 LiDAR Chip Business of Sophoton
6.15.2 LiDAR Chip Layout of Huawei 
6.15.3 LiDAR Chip Business of Luminar 
6.15.4 Automotive LiDAR Chip Business of Berxel Photonics
6.15.5 LiDAR Business of Dibotics

7 Vision Sensor Chip Suppliers
7.1 ON Semiconductor
7.1.1 Profile
7.1.2 Market & Product Layout (1)
7.1.3 Market & Product Layout (2)
7.1.4 Classification of Products 
7.1.5 Automotive CIS Products
7.1.6 Automotive ISP Products 
7.1.7 CIS Products - Front View CIS (1)
7.1.8 CIS Products - Front View CIS (2)
7.1.9 CIS Products - Cockpit CIS (1)
7.1.10 CIS Products - Cockpit CIS (2)
7.1.11 CIS Products - Cockpit CIS (3)
7.1.12 CIS Products - Cockpit CIS (4)
7.1.13 CIS Products – Surround/Back View CIS
7.1.14 ISP Products - ISP (1)
7.1.15 ISP Products - ISP (2)
7.1.16 CIS Technology
7.1.17 LiDAR Chip Technology
7.1.18 Market Share and Customers of ON Semiconductor’s Automotive Image Sensors 
7.1.19 Autonomous Driving Ecosystem Partners (1)
7.1.20 Autonomous Driving Ecosystem Partners (2)
7.2 Samsung Electronics
7.2.1 Automotive Image Sensors: ISOCELL Auto
7.2.2 Automotive Image Sensors: ISOCELL Auto 4AC
7.2.3 Features of Automotive Image Sensors
7.3 Sony
7.3.1 Profile
7.3.2 CIS Market Layout
7.3.3 Development History of CIS
7.3.4 Classification of Semiconductor Products
7.3.5 Autonomous Driving Sensor Chip Product Line
7.3.6 CIS Technology
7.3.7 Automotive CIS Products (1) 
7.3.8 Automotive CIS Products (2) 
7.3.9 Automotive CIS Products (3)
7.3.10 Application of Autonomous Driving Sensor Chips (1)
7.3.11 Application of Autonomous Driving Sensor Chips (2)
7.4 NXP
7.4.1 Profile
7.4.2 Classification of Products
7.4.3 Automotive ISP Products - ISP-integrated Vision Processing Unit (1) 
7.4.4 Automotive ISP Products - ISP-integrated Vision Processing Unit (2)
7.4.5 Automotive ISP Products - ISP-integrated Vision Processing Unit (3) 
7.4.6 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (1)
7.4.7 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (2)
7.4.8 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (3)
7.4.9 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (4)
7.4.10 Summary of Automotive ISP Products
7.4.11 ISP Software Training Partners
7.5 Nextchip
7.5.1 Profile & Classification of Products
7.5.2 Development History and Market Layout
7.5.3 Core Technologies
7.5.4 Products - ISP (1)
7.5.5 Products - ISP (2)
7.5.6 Products - ISP (3)
7.5.7 Products - ISP (4)
7.5.8 Products - ISP-integrated Autonomous Driving SoC (1)
7.5.9 Products - ISP-integrated Autonomous Driving SoC (2)
7.5.10 Products - ISP-integrated Autonomous Driving SoC (3)
7.5.11 Summary of Products (1)
7.5.12 Summary of Products (2)
7.5.13 Customers and Partners 
7.6 OmniVision Technology
7.6.1 Profile
7.6.2 Market Layout (1)
7.6.3 Market layout (2)
7.6.4 Technologies (1)
7.6.5 Technologies (2) 
7.6.6 Classification of Products
7.6.7 Products - ISP-integrated Video Processing Unit (1)
7.6.8 Products - ISP-integrated Video Processing Unit (2)
7.6.9 Products - ISP-integrated Video Processing Unit (3)
7.6.10 Products - ISP-integrated Video Processing Unit (4)
7.6.11 Products - ISP 
7.6.12 Products - ISP-integrated CIS (1)
7.6.13 Products - ISP-integrated CIS (2)
7.6.14 Products - ISP-integrated CIS (3) 
7.6.15 Products - ISP-integrated CIS (4)
7.6.16 Products - Non-ISP CIS 
7.6.17 Summary of Products (1)
7.6.18 Summary of Products (2)
7.6.19 Comparison of Some CIS Products between OmniVision and ON Semiconductor
7.7 SmartSens
7.7.1 Profile
7.7.2 Classification of Products
7.7.3 Automotive CIS Business
7.7.4 Products - ISP-integrated CIS (1)
7.7.5 Products - ISP-integrated CIS (2)
7.7.6 Products - ISP-integrated CIS (3)
7.7.7 Products - ISP-integrated CIS (4)
7.7.8 Products - ISP-integrated CIS (5)
7.7.9 Products - ISP-integrated CIS (6) 
7.7.10 Summary of ISP-integrated CIS Products
7.7.11 Automotive CIS Product Layout (1)
7.7.12 Automotive CIS Product Layout (2)
7.7.13 Market Layout (1)
7.7.14 Market Layout (2)
7.7.15 Product R&D Layout
7.8 GalaxyCore
7.8.1 Profile
7.8.2 CMOS Image Sensor Business
7.9 Metoak
7.9.1 Profile
7.9.2 Product Lines
7.9.3 Stereo Vision Chips 
7.10 Rockchip
7.10.1 Panoramic View Chip - RK3588M
7.10.2 Architecture of RK3588M SoC
7.11 Fullhan Microelectronics 
7.11.1 Profile
7.11.2 Classification of Products
7.11.3 Products - ISP (1)
7.11.4 Products - ISP (2) 
7.11.5 Products & Summary of Products
7.11.6 ISP Tuning & Image Tuning Lab
7.11.7 ISP Product Layout & Market Layout
7.11.8 Customers & Partners
7.12 Others
7.12.1 GPU Products of ARM
7.12.2 Vision Chip Products of NST Technology
 

Monthly Monitoring Report on China Automotive Intelligent Cockpit Technology and Data Trends (Issue 2, 2024)

Insight into intelligent cockpit: the trend towards large screens is obvious, with >10" center console screens sweeping over 80%. Based on the 2023 Edition, the 2024 Edition of Monthly Monitoring...

China Intelligent Driving Fusion Algorithm Research Report, 2024

Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and enhanced planning and control become the trend. China Intelligent Driving Fusion Algorithm Research Report, 2024 ...

Automotive Electronics OEM/ODM/EMS Industry Report, 2024

Automotive electronics OEM/ODM/EMS research: top players’ revenue has exceeded RMB10 billion, and new entrants have been coming in.  At present, OEMs in the Chinese automotive electronics indus...

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号