Automotive Cockpit SoC Technology and Application Research Report, 2020
  • Sept.2020
  • Hard Copy
  • USD $3,000
  • Pages:82
  • Single User License
    (PDF Unprintable)       
  • USD $2,800
  • Code: LY010
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $3,200

Cockpit SoC Supports More Displays, Beefs up AI, and Improves Functional Safety

Intelligent vehicle E/E architecture ushers in a period of intra-domain integration to trans-domain convergence and to central computer from the distributed one.

SOC 1.png

For cockpit domain, the intra-domain integration calls for powerful cockpit SoC which caters to the current cockpits’ needs to support more displays, enable more AI features and fuse with ADAS, have safer functionality, among others.

Support for More Displays
Against the trend of one core enabling multiple screens, it remains a decisive factor to being chosen by the user that how many displays a cockpit SoC can support. The third-generation Qualcomm Snapdragon cockpit SoC based on versatile CPU and GPU is an enabler for as many as six to eight displays.

Samsung Exynos Auto V9 processor is in favor of up to six in-vehicle screens and twelve cameras synchronously, which has been already found in Audi smart cockpits.

Designed for smart cockpit, SemiDrive X9 series unveiled by Nanjing Semidrive Technology Co., Ltd in 2020 support eight FHD displays and twelve cameras.

At CES2020, NXP showcased its multi-display solution supporting as many as 11 screens that are enabled by dual i.MX 8QuadMax.

Support for AI
Undoubtedly, NVIDIA stays ahead of its peers as concerns support for AI. NVIDIA rolled out CUDA in 2007 and had the idea of fostering an ecosystem via CUDA then, which is helpful to both hardware sales and its superiority in software as well as to user loyalty. Despite its cockpit SoC gets a clear edge in deep learning, NVIDIA enjoys not big a share in the cockpit processor market because of its automotive business focus on autonomous driving chips.

Through acquisition of Freescale, NXP is in possession of a machine learning expert team, i.e., CogniVue, an image recognition IP development team (acquired by Freescale in September 2015) based in Ottawa, Canada. NXP’s eIQ automated deep learning (DL) toolkit enables the developer to introduce DL algorithms to application programs, and meets the strict automotive standards.

SOC 2.png

Apart from its efforts in nurturing AI capabilities, NXP has been paying attention to AI defects. Deep learning employs probabilities to recognize objects and the results are inexplicable, which is disastrous to cars with a high demanding on safety. NXP has been studying a method called “explicable AI (xAI)” that extends the machine learning reasoning and probability computing capabilities through addition of more rational and humanlike decision-making methods and extra deterministic dimensions, and that combines all merits of AI with reasoning mechanism to imitate human reaction.

Fusion with ADAS for Higher Functional Safety
Some ADAS features like surround view parking, pedestrian and obstacle recognition tend to be integrated in the cockpit domain, needing the cockpit SoC to consider ADAS related capabilities.

R-Car H3, for example, gets largely utilized in cockpit and can also cope with complex functions such as obstacle detection, driver status recognition, danger prediction and avoidance.

More and more smart cockpits are added with HUD, especially the latest AR-HUD integrated with ADAS, delivering capabilities like following distance warning, line press warning, traffic lights monitoring, ahead-of-time lane change, pedestrian warning, road mark display, lane departure warning, obstacles ahead, and driver status monitoring.

There will be higher requirements on functional safety once cockpit SoC is added with some ADAS features, which will, beyond doubt, pose greater challenge to the cockpit SoC suppliers.

1 Cockpit SoC and Its Application
1.1 Overview of Cockpit SoC
1.2 Supply Relationship of Low-to-mid-end/High-end Intelligent Cockpit SoC
1.3 Low-to-mid-end Cockpit Chip is an Obscure Corner but a Mainstay of the Market
1.4 Comparison (I) between Main Cockpit SoCs
1.5 Comparison (II) between Main Cockpit SoCs
1.6 Ranking of Cockpit Processors by CPU Compute
1.7 Ranking of Cockpit Processors by GPU Compute
1.8 Main Overseas Cockpit Platforms and the Processors Used
1.9 Automotive Infotainment Supply Chain

2 NXP and Its Cockpit SoC
2.1 NXP Cockpit Processor
2.2 Main Clients for NXP i.MX Processor
2.3 Monopoly of i.MX6 Once in the Low- and Medium-end Markets
2.4 Key Parameters of i.MX8 Series
2.5 Typical Application Schemes of NXP i.MX Cockpit Chips 
2.6 Latest Advances in NXP Cockpit Chips
2.7 NXP i.MX Chip Shipments
2.8 NXP i.MX Partner Ecosystem
2.9 Operating Systems NXP i.MX Supports
2.10 AI Algorithms NXP i.MX Supports
2.11 NXP i.MX Products and Future Cockpit Systems

3 Texas Instruments and Its Cockpit SoC
3.1 TI Cockpit Chip
3.2 TI has Won a Place in Mid-end Cockpit Processor Market
3.3 Parameters of Jacinto 6 Family
3.4 Jacinto Cockpit Solutions and Partners

4 Renesas and Its Cockpit SoC
4.1 Profile
4.2 Chip Business Layout
4.3 R-CAR Family for Cockpit Processor
4.4 Cockpit Chip Product Lines
4.5 Comparison of Performance between Cockpit SoCs
4.6 Latest News about Cockpit Chip
4.7 Application in MBUX
4.8 Cooperation with Volkswagen

5 Qualcomm and Its Cockpit SoC
5.1 First- and Second-generation Cockpit SoCs
5.2 Third-generation Cockpit SoC
5.3 AI Features 820A Supports
5.4 Qualcomm 855A
5.5 Qualcomm SA8155p
5.6 Mass-produced Vehicles with Qualcomm 820am
5.7 OEMs Using Qualcomm Cockpit Chips 

6 Intel and Its Cockpit SoC
6.1 Intel A3900 Processor
6.2 Main Vehicle Models with Intel A3900 Family

7 Samsung and Its Cockpit SoC
7.1 Cockpit Processors
7.2 Automotive SoC Roadmap
7.3 Application Cases of Automotive SoC

8 NVIDIA and Its Cockpit SoC
8.1 NVIDIA Parker
8.2 NVIDIA Chips and Mercedes-Benz/Audi
8.3 Mercedes-Benz MBUX and Nvidia Chips

9 Telechips and Its Cockpit SoC
9.1 Featured Products: Low-end Chips and LCD Instruments
9.2 Application Models in China Market
9.3 Cockpit Chip: Dolphin Family
9.4 Cockpit Application Schemes

10 MediaTek and Its Cockpit SoC
10.1 Cockpit Chips
10.2 Rapid Progress in MT2712
10.3 MT2712 and Lightweight Virtual Machines

11 SemiDrive and Its Cockpit SoC
11.1 Block Diagram of X9 Application
11.2 X9 Family
11.3 Four Core Technologies of X9

12 Development Trends for Cockpit SoC and Architecture
12.1 Development Trends for Intelligent Cockpit Industry
12.2 BMW Cockpit Electronics Architecture
12.3 BMW TCB, Gateway and Head Unit Architecture
12.4 BMW's Latest Head Unit: MGU
12.5 Mercedes-Benz NTG6 Features a Dual Architecture
12.6 Audi MIB Features a Dual System Architecture
12.7 Mid-end Chips Support Single-display Linux+Android Dual System
12.8 Single Hardware System for Land Rover
12.9 820am System for Land Rover Defender
12.10 Summary

Huawei CASE (Connected, Autonomous, Shared, Electrified) Layout and Strategy Research Report, 2020

Research on Huawei's CASE (Connected, Autonomous, Shared, Electrified): Who is the main rival of Huawei in automotive engagement?Huawei showcased its automotive products at Beijing International Autom...

Automotive Cockpit SoC Technology and Application Research Report, 2020

Cockpit SoC Supports More Displays, Beefs up AI, and Improves Functional Safety Intelligent vehicle E/E architecture ushers in a period of intra-domain integration to trans-domain convergence and to c...

Automotive Chassis-by-Wire Industry Report, 2020

Launch of Autonomous Driving Remains to Use Mature Chassis-by-wire Technology Chassis-by-wire makes it feasible to remove accelerator pedal, brake pedal and steering wheel, whose maturity has a beari...

China Commercial Vehicle Finance Industry Report, 2020-2026

China's auto finance which has undergone four stages of development now becomes a market featuring diversified competition, with penetration of 52% and being valued at RMB1,280 billion in 2019. The s...

Smart Road: Intelligent Roadside Perception Industry Report, 2020

Research on Roadside Perception: With Greater Policy Support, the RMB10 Billion Intelligent Roadside Perception Market Takes OffIn our Smart Road: Intelligent Roadside Perception Industry Report, 2020...

Global and China Automotive MLCC Industry Report, 2020-2026

As one of the most widely used passive components, MLCC commands approximately 40% of the capacitor market. MLCC finds broad application in fields like communication, consumer electronics, automobile ...

Global and China Fuel Cell Industry Report, 2020

Fuel Cell Research: FCV is Expected to Boom over the Next Decade In our recent report Global and China Fuel Cell Industry Report, 2020, we analyze the advances and tendencies of fuel cell industry in...

China Vehicle Inspection Industry Report, 2020-2026

China's car ownership showed the CAGR of 12.9% during 2012-2019 and it is estimated to reach 272.13 million units in 2020 with a year-on-year spike of 7.2%, invigorating the motor vehicle inspection m...

AUTOSAR Software Industry Report, 2020

AUTOSAR Research Report: in the Era of Software Defined Vehicles (SDV), Will an OEM Acquire an AUTOSAR Software Firm? Software defined vehicle (SDV) and architecture defined vehicle are hotly debate...

Global and China Lithium-ion Battery Anode Material Industry Report, 2020-2026

Lithium battery is comprised of cathode material, anode material, separator and electrolyte, of which anode material as a key raw material makes up 5%-15% of lithium battery cost. In 2019, China shipp...

China Automotive Intelligent Rearview Mirror Industry Report, 2020

Regulations and ADAS Help Intelligent Rearview Mirror Market Blossom In our report China Automotive Intelligent Rearview Mirror Industry Report, 2020, we analyze and research the status quo of the in...

BYD CASE (Connected, Autonomous, Shared, Electrified) Layout and Strategy Research Report, 2020

Research on BYD's CASE (Connected, Autonomous, Shared, Electrified): Absence of software and operating systemAs we all know, BYD excels in hardware. BYD started with rechargeable batteries and foraye...

ADAS and AD Industry Chain Report, 2019-2020 -- LiDAR

Research on Automotive LiDAR Industry: How five technology roadmaps develop amid the upcoming mass production of high-channel LiDAR? During 2020-2025, autonomous driving above L3 will be commercializ...

China Automotive Finance Industry Report, 2020-2026

Automotive finance penetration surged to 48% or so in China in 2018 and around 52% in 2019, yet still below the global 70%, and expectedly rising to 71% in 2026 with policy incentives and a change in ...

Global and China Leading Tier1 Suppliers’ Intelligent Cockpit Business Research Report, 2020 (I)

Leading Tier1 Suppliers’ Cockpit Business Research Report: Eight Development Trends of Intelligent Cockpit Abstract: in the next two or three years, a range of new intelligent cockpit technologies wi...

Automotive Cockpit Multi and Dual Display Trend Report, 2020

Dual and multi display solutions and development tendencies are analyzed in this report. Amid the smart cockpit trend, the display incarnates intelligence as the main interface of human-computer int...

Automotive IGBT Industry Report, 2020

IGBT (Insulated Gate Bipolar Transistor) is a fully controlled and voltage-driven power semiconductor device incorporating BJT and MOSFET, superior in small drive power, fast switching speed, low satu...

Global and China Telematics-Box(T-Box) Industry Report, 2020

T-Box Research: 46.7% of Passenger Cars Carry T-Box in 2020Q1 T-Box (Telematics-Box), also called telematics control unit (TCU), is comprised of GPS unit, outer interfaces for communications, electro...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号