Automotive Cockpit SoC Research Report, 2023
  • Mar.2023
  • Hard Copy
  • USD $4,700
  • Pages:380
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: CYH108
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900

Cockpit SoC research in 2023: Can X86 solutions returning to cockpit SoC challenge the “ARM+Google” mobile solution?

This report highlights the research on the products and plans of 9 overseas and 8 Chinese cockpit SoC vendors, and the installation of cockpit SoCs by more than 30 OEMs, and explores some of key issues, including:

20120114.gifIn terms of configuration data of high-end cockpit SoCs in vehicle models, who play a dominant role in the market, and what are the configuration strategies of major OEMs?
20120114.gifWhat Qualcomm's next-generation cockpit SoC SA8295 can bring to vehicle intelligent cockpits?
20120114.gifCan X86 server/PC solutions returning to cockpit SoC challenge the "ARM+Google" mobile solution?
20120114.gifHow cockpit SoCs can be localized to replace foreign ones?
20120114.gifWhat added value cockpit SoCs with high performance and high computing power can bring to smart cars?
20120114.gifIn the trend for cockpit and driving integration, how cockpit SoC will evolve?

As a core selling point of smart cars, high-performance SoC products have become a focus in the next-generation cockpit layout.

According to the statistics, in 2022 smart cars in China were installed with 7.005 million cockpit SoCs, a year-on-year upsurge of 44.9%, of which Qualcomm's cockpit SoCs boasted the highest installation, up to 3.039 million units, or 43.4% of the total.

SOC 1_副本.png

In 2022, described as the first year in which Qualcomm SA8155P started production and was mounted on cars, both emerging carmakers (NIO, Xpeng, Neta, Weltmeister, etc.) and conventional automakers (BMW, Ford China, GM, Great Wall, GAC, Geely, Chery, etc.) spawned car models with Qualcomm 8155 chips. Even it was proposed that the chips of NIO, ZEEKR 001, Ford Mach-E, Voyah FREE and other models were upgraded to Qualcomm 8155 for old customers to make them more satisfied.

Qualcomm's next-generation cockpit SoC SA8295P is also production-ready. At present, multiple suppliers such as Bosch, Desay SV, Thundersoft and PATEO have begun to create cockpit solutions based on Qualcomm 8295 so as to answer the needs of the fast-growing smart car market; Jidu’s first model carrying this chip was announced to be mass-produced in 2023. It is known that some models of Great Wall, GAC and Xiaomi among others will also be equipped with this chip.

There is no doubt that Qualcomm has made a great success in the cockpit field, and its chips have even become a selling point for smart cars. The blue ocean market cockpit SoC becomes another arena following mobile phone SoC, having attracted quite a few chip vendors to set foot in. As well as Qualcomm, players also include international giants like MediaTek, Samsung and Nvidia, Chinese startups such as SemiDrive and SiEngine, and non-automotive chip vendor AMD.

Among them, SemiDrive’s X9 Series is one of the cockpit products making the fastest progress in mass production in China. In July 2022, SAIC Roewe's 3rd-generation Roewe RX5/Super Hybrid eRX5 equipped with X9 Series intelligent cockpit chips started pre-sale. In addition, the X9-based models of automakers like Chery and Changan Auto also have been mass-produced and launched on market. At present, SemiDrive X9 has been designated for dozens of blockbuster models, fully covering local and joint venture auto brands, emerging carmakers and world-renowned automakers.

In recent two years, AMD has begun to make layout in the intelligent cockpit field, challenging Qualcomm's dominance. Tesla is the first to apply AMD chips to its cockpit systems, and in the future the full range of its models will use AMD’s chips. In August 2022, AMD and ECARX forged a strategic partnership in which ECARX will assist AMD in global promotion. In late 2022, GAC also announced the ADIGO Park Metaverse cockpit based on AMD’s chip.

At the CES 2023, Smart showcased its newest intelligent cockpit computing platform co-built with ECARX. This platform utilizes AMD Ryzen? Embedded V2000 Processors and AMD Radeon? RX 6000 Series GPUs, delivering CPU compute up to 400K DMIPS, four times higher than Qualcomm 8155, the current mainstream cockpit chip on market. The digital cockpit will offer advanced computing power and stunning game console-grade visual graphic rendering capabilities, including full 3D human-machine interaction interface, ultra-high definition 4K multiple displays and 3A high-end gaming entertainment. The models based on this computing platform are scheduled to be mass-produced and launched on market in 2024.

SOC 2_副本.png

As cars become more intelligent, intelligent cockpits provide ever more configurations. In particular, the production and installation of emerging technologies such as 3D engine, vehicle games, XR/VR, and Metaverse enable smooth cockpits. User experience requiring high-performance cockpit SoCs further drives up the demand for high-performance, high-computing power products like Qualcomm 8295 and AMD’s chips, which have become a focus of major suppliers and OEMs in their next-generation cockpit layout.

The pace of replacing foreign cockpit SoCs with the homemade quickens, which are expected to be produced in quantities and mounted on cars in 2023.

Facing the huge intelligent cockpit SoC market, the new products of China’s local cockpit chip vendors have offered significant improvements in recent two years. An array of homegrown cockpit SoC vendors have emerged, including Huawei, SemiDrive, Rockchip, AutoChips, SiEngine, UNISOC and Allwinner Technology, and have rolled out a range of intelligent cockpit SoC products for the low-, mid- and high-end markets, aiming at a faster pace of localization.

SOC 3_副本.png

SemiDrive’s X9 Series, an automotive-grade intelligent cockpit chip, integrates high-performance CPU, GPU and AI accelerator, as well as video processor, meeting the rising demand of new-generation automotive electronic cockpit applications for great computing power and abundant multimedia features. X9 enables "one chip supporting ten screens" (generally 3 to 4 chips are required), covering all cockpit functions such as dashboard, center console, electronic rearview mirror, entertainment, DMS, 360° surround view + APA, and speech system.

SOC 4.png

In addition to cockpit chips, SemiDrive’s products also include intelligent driving, central gateways and high-performance MCUs. In 2022, the shipments of SemiDrive’s four major product series totaled over one million pieces. As concerns automotive certification, SemiDrive has passed ISO 26262 functional safety production process certification, AEC-Q100 reliability certification, ISO26262 functional safety certification, and the certification by the State Cryptography Administration, becoming China’s first automotive chip company to acquire the four certificates.

RK3588M, Rockchip's newest intelligent cockpit flagship chip, adopts 8nm process and integrates the octa-core CPU architecture composed of quad-core A76 and quad-core A55. It features single-screen 8K display capability, 8K video decoding and encoding, native six-screen display interfaces, 6 TOPS NPU, native 2-channel TypeC, and dual-channel 16-megapixel ISP + at least 12-channel camera, and provides multi-system software including Android, Linux and QNX (Hypervisor), with high computing power, low power consumption, strong multimedia and abundant data interfaces.

SOC 5_副本.png

Based on ultrahigh performance computing, Rockchip RK3588M enables "one chip supporting multiple screens", that is, a single RK3588M chip can simultaneously drive multiple screens including in-vehicle infotainment system, LCD instrument panel, electronic rearview mirror, and rear headrest screens. In addition, it also supports 360° surround view algorithm, enhanced image display, multiple audio and visual algorithms, to build a reliable intelligent network system, bringing users scientific interaction experience.

In the trend for cockpit and driving integration, cockpit SoC is evolving towards central compute SoC.

As intelligent driving technology matures, intelligent cockpits play an ever bigger part, and cockpit and driving integration becomes a development trend. In the fusion of cockpit, intelligent driving, power, chassis, and body domains, the functions of some domains can be integrated into a high-performance computing unit first, then more functional domains can be gradually aggregated, and finally, a central computing model is created.
At present, major suppliers such as Bosch, ZF, Desay SV, EnjoyMove Technology, ThunderSoft and SemiDrive have embarked on layout of central computing platform solutions.

SOC 6_副本.png

Aurora, Desay SV’s intelligent computing platform product, integrates the Nvidia Orin, Qualcomm SA8295 and Black Sesame A1000 chip hardware, with total compute up to 2000TOPS. It also packages CPU, GPU and AI hardware by atomic operation for the sharing of compute. As for software, it integrates such core functional domains as intelligent cockpit, intelligent driving, and connected service.  

SOC 7.png 

Bosch's intelligent cockpit and driving fusion hardware solution combines displays (about 7 screens), cameras, microphones, and speakers of the intelligent cockpit on a single SoC, and also integrates radar, camera and other sensors required for intelligent driving. The central computing task is executed by the universal computing module in the domain control unit, and the redundancy design is based on a MCU.

SOC 8_副本.png

In the long run, with continuous breakthroughs in chip performance and technology, when automotive EE architecture enters the age of "central computing", cockpit and intelligent driving chips are expected to fuse, and eventually form a single high-performance chip-driven model. In current stage, Qualcomm and Nvidia among others have unveiled next-generation central computing SoC products to adapt to the booming smart car market.

At the CES 2023, Qualcomm introduced Snapdragon Ride? Flex SoC, its latest SoC product divided into three levels of Mid, High and Premium, of which the most advanced Ride Flex Premium SoC, coupled with external AI accelerators, delivers the comprehensive AI compute of 2000TOPS. The Flex SoC is engineered to support mixed-criticality workloads across heterogenous compute resources, and based on supercompute SoC and service-oriented architecture (SOA) to enable digital cockpit, driver assistance, autonomous driving and telematics and other functions in distributed domain control architecture.

Moreover Qualcomm also announced that several auto brands have selected Snapdragon Ride Flex for their next-generation platform designs. The first Snapdragon Ride Flex SoC is sampling now for an expected start of production beginning in 2024.

SOC 9_副本.png

It is conceivable that around 2025, supercompute chips will enter the pre-installation cycle, and the central compute + zonal control architecture will be in the critical phase of starting production on large scale.

1 Overview of Automotive Cockpit SoC 
1.1 Overview of Cockpit SoC
1.2 Composition of Cockpit SoC
1.3 Design Flow of Cockpit SoC
1.4 Development History of Cockpit SoC 
1.5 Comparison between Popular Cockpit SoCs (I)
1.6 Comparison between Popular Cockpit SoCs (II)
1.7 Comparison between Popular Cockpit SoCs (III)
1.8 Ranking of Cockpit SoCs by CPU Compute 
1.9 Ranking of Cockpit SoCs by GPU Compute 
1.10 Ranking of Cockpit SoCs by NPU Compute 
1.11 Specifications of Cockpit SoC Memory
1.12 Operating Systems Supported by Cockpit SoC
1.13 Displays and Cameras Enabled by Cockpit SoC
1.14 Automotive Safety Certification of Cockpit SoC
1.15 Cockpit SoC Functional Safety Certification and Implementation Method
1.16 Major Companies’ Planning for Cockpit SoC: Overseas
1.17 Major Companies’ Planning for Cockpit SoC: China

2 Automotive Cockpit SoC Configuration and Strategy Analysis
2.1 Cockpit SoC Competitive Pattern
2.1 Cockpit SoC Competitive Pattern
2.1.2 Market Pattern of Cockpit SoCs for Low- and Medium-end Models
2.1.3 Market Pattern of Cockpit SoCs for Medium- and High-end Models
2.1.4 Competitive Pattern of Foreign Cockpit SoC Suppliers
2.1.5 Competitive Pattern of Chinese Local Cockpit SoC Suppliers
2.1.6 Tier1 Partners of OEMs in Cockpit SOCs
2.1.7 Cockpit SOC Vendors Provide "Hardware + Software" Integrated Solutions
2.1.8 Consumer-grade Chips Are Used in IVI Systems
2.1.9 Ongoing Reconstruction of Automotive Cockpit SoC Supply Chain 
2.1.10 Cockpit SoC Shipment Price
2.1.11 Global Intelligent Cockpit SoC Penetration Rate
2.1.12 China's Intelligent Cockpit SoC Penetration Rate
2.1.13 China’s Intelligent Cockpit SoC Market Size
2.1.14 Intelligent Cockpit SoC Installations in China, 2022
2.1.15 Market Share of Intelligent Cockpit SoC Suppliers in China, 2022
2.2 Cockpit SoC Configuration Strategies of Main OEMs
2.2.1 Summary of Cockpit SoC Supply to Chinese Automakers (1)
2.2.2 Summary of Cockpit SoC Supply to Chinese Automakers (2)
2.2.3 Summary of Cockpit SoC Supply to Chinese Automakers (3)
2.2. 4 Summary of Cockpit SoC Supply to Foreign Automakers (1)
2.2. 5 Summary of Cockpit SoC Supply to Foreign Automakers (2)
2.2. 6 Summary of Cockpit SoC Supply to Emerging Carmakers (1)
2.2. 7 Summary of Cockpit SoC Supply to Emerging Carmakers (2)
2.2.8 Chip Layout of OEMs 
2.2. 9 Cockpit SoC Application Trends of Major OEMs (1)
2.2. 10 Cockpit SoC Application Trends of Major OEMs (2)
2.3 Installation of Qualcomm Cockpit SoCs in Intelligent Vehicles in China, 2022
2.3.1 TOP20 Intelligent Vehicle Brands Equipped with Qualcomm Cockpit SoC in China, 2022
2.3.2 TOP20 Intelligent Vehicle Models Equipped with Qualcomm Cockpit SoC in China, 2022  
2.3.3 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China: Independent Brands (1)
2.3.4 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China: Independent Brands (2)
2.3.5 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China: Independent Brands (3)
2.3.6 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China: Emerging Brands
2.3.7 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China: Foreign Brands 
2.3.8 Intelligent Vehicle Models Equipped with Qualcomm SA8155P and Installations in China by Price Range, 2022 
3 Main Development Trends of Automotive Cockpit SoC
3.1 Topic 1: What Does Qualcomm 8295 Bring to the Intelligent Vehicle Market?
3.1.1 Qualcomm 8155 Has Been Applied to Many Mid-to high-end Models
3.1.2 How to Choose Cockpit SoC
3.1.3 Logic behind Qualcomm Snapdragon 8155 Chip Being Recognized
3.1.4 Business Model Logic of Qualcomm’s Next-generation Snapdragon SA8295P
3.1.5 What Can Qualcomm Snapdragon 8295 Chip Bring to Intelligent Vehicles?
3.1.6 Qualcomm Snapdragon 8295 Chip Has Been Ordered by Many Automakers 
3.2 Topic 2: Do Server/PC Solutions Buck the Next-generation Cockpit SoC?
3.2.1 AMD VS Qualcomm 
3.2.2 “ARM+Android” VS “X86+Linux”
3.2.3 Do Server/PC Solutions Buck the Next-generation Cockpit SoC?  (1) 
3.2.4 Do Server/PC Solutions Buck the Next-generation Cockpit SoC? (2) 
3.2.5 Main Products with X86 Architecture in the Cockpit Field
3.2.6 Optimal Combination of X86 Architecture and Self-developed Linux Desktop System in the Cockpit Field
3.2.7 AMD Cockpit Cases: AMD + Tesla
3.2.8 AMD Cockpit Cases: AMD + ECARX
3.2.9 AMD Cockpit Cases: High-performance Immersed Cockpit - ADiGO PARK Metaverse
3.3 Topic 3: How to Realize Cockpit SoC Localization
3.3.1 Local Cockpit SoC Companies Constantly Launch New Products amid the Localization Trend  
3.3.2 Barriers to Cockpit SoC Localization
3.3 Ways to Cockpit SoC Localization
3.3.4 Case: SiEngine Cockpit SoC Production and Installation 
3.4 Topic 4: What Added Value Will the Evolution of Cockpit SoC Performance Bring to Vehicles?
3.4.1 Must-Have Capabilities for Cockpit SoC
3.4.2 The cockpit SoC Is Getting Smaller and Smaller, and the 4nm Chip Has Been Released  
3.4.3 High CPU and GPU Compute Required by Cockpit SoC (1)
3.4.4 High CPU and GPU Compute Required by Cockpit SoC (2)
3.4.5 High CPU and GPU Compute Required by Cockpit SoC (3)
3.4.6 Maximum AI Computed Required by Cockpit SoC
3.4. 7 Performance of the Next-generation Cockpit SoC of Main Companies
3.4.8 Functions Supported by Cockpit SoC 
3.4.9 Application Scenarios of High-performance Cockpit SoC (1)
3.4.10 Application Scenarios of High-performance Cockpit SoC (2)
3.4.11 Application Scenarios of High-performance Cockpit SoC (3)
3.4.12 Application Scenarios of High-performance Cockpit SoC (4)
3.5 Topic 5: How Will Cockpit SoC Develop in the Trend for Cockpit and Driving Integration
3.5.1 Cockpit and Driving Integration Is Coming, and the Automotive Central Computing Platform Will Be Laid out amid the EEA Evolution  
3.5.2 Automotive Central Computing Platform Layout Modes
3.5.3 Evolution of Bosch's Cockpit and Driving Integration Route 
3.5.4 Bosch Cab-driving Integration Solution Design
3.5.5 Cockpit SoC Is Moving towards Central Computing SoC
3.5.6 Central Computing SoC Layout
3.5.7 Challenges for Central Computing SoC
4 Foreign Cockpit SoC Companies
4.1 NXP 
4.1.1 Cockpit Processors (1)
4.1.2 Cockpit Processors (2)
4.1.3 Main Performance Indices of i.MX8 Series (1)
4.1.4 Main Performance Indices of i.MX8 Series (2)
4.1.5 NXP i.MX8QM Software Stack Module
4.1.6 Typical Use Cases of NXP I.MX Chips in Cockpits
4.1.7 NXP i.MX6 for the Low- and Medium-end Market
4.1.8 NXP i.MX Partner Ecosystem
4.1.9 Operating Systems Supported by NXP i.MX
4.1.10 AI Algorithms NXP i.MX Supports
4.1.11 NXP i.MX Products and Future Cockpit Systems (1)
4.1.12 NXP i.MX Products and Future Cockpit Systems (2)
4.1.13 Connected eCockpit Co-launched by NXP and Altia
4.1.14 Latest Cockpit Dynamics 
4.2 Texas Instruments (TI)
4.2.1 Cockpit Chips
4.2.2 TI J6
4.2.3 TI Wins a Place in Mid-end Cockpit Processor Market
4.2.4 Parameters of Jacinto 6 Series 
4.2.5 Jacinto Cockpit Solution and Partners
4.2.6 New Semiconductor Factories
4.3 Renesas
4.3.1 Profile
4.3.2 Chip Business
4.3.3 Expansion of Vehicle Product Lines by Acquiring Dialog 
4.3.4 Expansion of Vehicle Product Lines by Acquiring Dialog
4.3.5 Product Portfolio Sales of Renesas, FY2020  
4.3.6 Renesas + Dialog Combinations Provide High-end Comprehensive Cockpit Solutions
4.3.7 Renesas + Dialog Combinations Provide Cockpit Solutions with Haptic Touch 
4.3.8 Chip Capacity Expansion Plan
4.3.9 R-Car Series for Automotive Sector
4.3.10 R-Car Series Used in Cockpit Processors
4.3.11 Cockpit SoC Product Lines
4.3.12 Key Features of Cockpit SoC
4.3.13 R-Car Gen3e
4.3.14 Digital Dashboard with Driver ID Integrated R-Car E3e
4.3.15 Android-based Comprehensive Cockpit Powered by R-Car M3e
4.3.16 Integrated non-virtualized intelligent cockpit solution
4.3.17 Low-Cost Digital Instrument Cluster Reference Design
4.3.18 Cockpit Trends 
4.3.19 R-Car in Future Automotive Architectures
4.3.20 EEA Strategy: Helps Automakers/Tier1 Suppliers Build Integrated Platforms with the Future EEAs
4.3.21 Software Platform: R-Car Software Development Kit (SDK)
4.3.22 Software Platform: Cross-platform, Scalable and Reusable
4.3.23 Software-as-a-Service Platform
4.3.24 Virtual Development Environment for Rapid Development and Evaluation of Automotive Application Software 
4.3.25 Integrated Development Environment for ECU-level Automotive Application Software without Hardware 
4.3.26 Dynamics
4.4 Qualcomm 
4.4.1 Development History of Cockpit SoC
4.4.2 Digital Chassis
4.4.3 Development History of Cockpit Platform
4.4.4 Cockpit Platform Integrates Multiple Functions
4.4.5 Scalable Software Ecosystem of Cockpit Platform
4.4.6 4th-Generation Snapdragon Cockpit Platform
4.4.7 4th Generation Cockpit SoC: SA8295
4.4.8 3rd Generation Snapdragon Cockpit SoC (1)
4.4.9 3rd Generation Snapdragon Cockpit SoC (2)
4.4.10 3rd Generation Snapdragon Cockpit SoC (3)
4.4.11 1st and 2nd Generation Snapdragon Cockpit SoC 
4.4.12 AI Supported by Snapdragon 820A 
4.4.13 Major Cockpit Platform Customers
4.4.14 Snapdragon Ride Flex SoC (1) 
4.4.15 Snapdragon Ride Flex SoC (2) 
4.4.16 Latest Cockpit Dynamics
4.5 Intel 
4.5.1 Cockpit Processor Layout
4.5.2 A3900 Processor
4.6 Samsung 
4.6.1 Cockpit Processors
4.6.2 Cockpit Processors: V9
4.6.3 Cockpit SoC: Exynos Auto V7
4.6.4 Automotive SoC Roadmap
4.6.5 Automotive SoC Application Cases
4.7.1 Deep Learning Processors
4.7.2 Automotive Central Computing Chip: Thor
4.7.3 Deep Learning Processors: Orin
4.7.4 Deep Learning Processors: Parker
4.7.5 Mercedes-Benz’s 1st Gen MBUX Uses Parker, while the 2nd and 3rd Gen MBUX Use Xavier NX
4.7. 6 NVIDIA Chips Were Once the Favorites of Mercedes-Benz and Audi
4.8 Telechips 
4.8.1 Focus on Low-end and LCD Clusters 
4.8.2 Development History of Dolphin Cockpit Processor
4.8.3 Cockpit Chips: Dolphin 5
4.8.4 Cockpit Chips: Dolphin 3 Series
4.8.5 Cockpit Chips: Dolphin+ Series
4.8.6 Major Customers
4.8.7 Cockpit Application Solutions 
4.8.8 Dolphin 3 Intelligent Cockpit Solution
4.8.9 Cockpit Dynamics
4.9 AMD
4.9.1 Automotive Processor Layout
4.9.2 The Cockpits of Tesla’s All Models Will Use AMD Processors
4.9.3 Embedded V1000 Series
4.9.4 Embedded V2000 Series
4.9.5 GPU Architecture Roadmap
4.9.6 Processor Architecture Roadmap
4.9.7 Major Automotive Intelligent Cockpit Customers

5 Chinese Cockpit SoC Companies
5.1 Rockchip
5.1.1 Profile
5.1.2 Development History
5.1.3 Automotive Solution Application - Passenger Car Series and Commercial Vehicle Series
5.1.4 Automotive Chip Planning
5.1.5 Advantages of Self-developed IP
5.1.6 6RK3588M - One-chip Multi-screen Intelligent Cockpit Solution
5.1.7 RK3568M - ADAS + Center Console Integrated Product
5.1.8 RK3358M - Applicable to Full LCD Cluster and Center Console (Compliant with AEC-Q100)
5.1.9 Automotive Audio and Speech Chips
5.1.10 Automotive Chip Vision
5.2 SemiDrive 
5.2.1 Profile
5.2.2 Cockpit Chips: X9
5.2.3 Core Features of X9
5.2.4 Block Diagram of X9 Series Application Solution
5.2.5 Four Processors
5.2.6 Flagship Cockpit Processor: X9U
5.2.7 Block Diagram of X9U Application Solution
5.2.8 Cockpit-Parking Integrated System
5.2.9 Central Computer Architecture
5.2.10 Partners & Customers
5.2.11 Digital Cockpit Solution Development with BlackBerry QNX
5.2.12 Cooperation with Kotei in Intelligent Cockpits
5.2.13 Latest Dynamics (1)
5.2.14 Latest Dynamics (2)
5.3 MediaTek
5.3.1 Cockpit Chips
5.3.2 MT2712
5.3.3 The Lightweight Hypervisor for MT2712 Creates Popular Android Infotainment
5.3.4 MT8666
5.3.5 MT8675
5.3.6 MT8675 Chip Platform Virtualized Intelligent Cockpit Solution
5.3.7 MediaTek and ECARX
5.3.8 Cockpit Development Planning
5.4 AutoChips
5.4.1 Cockpit SoC
5.4.2 Cockpit SoC Product Matrix
5.4.3 Cockpit Processors: AC8025
5.4.4 Example of Cockpit Design Architecture Based on AC8025
5.4.5 Cockpit Processors: AC8015
5.4.6 Cockpit Processor System Architecture
5.4.7 Integrated Cockpit Solution
5.4.8 Cockpit Chip Development Planning
5.4.9 Partners & Customers
5.5 SiEngine Technology  
5.5.1 Profile
5.5.2 Development History
5.5.3 Intelligent Cockpit Chips: DragonHawk One (Longying One) (SE1000)
5.5.4 Key Parameters of Intelligent Cockpit Chips
5.5.5 Cockpit Chip Software and Hardware Reference Design Platform
5.5.6 Development Planning
5.5.7 Cooperation with Desay SV, Neusoft, etc.
5.5.8 Cooperation with ECARX and FAW in Developing an Intelligent Cockpit Platform based on DragonHawk One (Longying One)
5.6 Huawei Hisilicon 
5.6.1 Cockpit Chips: Kirin 710A
5.6.2 Cockpit Chips: Kirin 990A
5.7.1 Profile
5.7.2 Intelligent Cockpit Chips: A7870
5.7.3 Intelligent Cockpit Chips: A7862
5.8 Allwinner Technology 
5.8.1 Automotive Market Layout
5.8.2 Development History of Automotive SoC Chips
5.8.3 Cockpit Processors: T7
5.8.4 T7 Architecture
5.8.5 Cockpit Processors: T5
5.8.6 SoC Development Route
5.8.7 Major Automotive SoC Customers
6 Cockpit SoC Application Trends of OEMs
6.1 BYD
6.1.1 Cockpit SoC
6.1.2 Qualcomm 4G 6125(665) Chip / 5G 6350(690) Chip with Lower Cost 
6.1.3 Overseas models of Han and Tang will be equipped with the Qualcomm 8155 cockpit solution from Autolink World
6.2 Tesla Cockpit SoC
6.2.1 Intelligent Cockpit Hardware Iteration (1)
6.2.2 Intelligent Cockpit Hardware Iteration (2)
6.2.3 System Architecture of MCU3.0 Infotainment Control Unit
6.2.4 Hardware Configuration of MCU3.0 Infotainment Control Unit
6.2.5 MCU4.0 Infotainment Control Unit
6.3 BMW Cockpit SoC
6.3.1 Cockpit SoC Evolution
6.3.2 MGU22
6.3.3 MGU21
6.3.4 MGU
6.4 Mercedes-Benz Cockpit SoC
6.4.1 Cockpit SoC Evolution
6.4.2 NGT7
6.4.3 Third-generation MBUX
6.4.4 Second-generation MBUX 
6.4.5 First-generation MBUX
6.4.6 NTG6 with Dual Architecture
6.5 Volkswagen Cockpit SoC
6.5.1 Cockpit SoC
6.5.2 ICAS3 Cockpit  
6.5.3 ID.4 Cockpit
6.5.4 CNS 3.0 Architecture
6.6 Audi Cockpit SoC
6.6.1 Intelligent Cockpit SoC Evolution
6.6.2 MIB with Dual System Architecture
6.6.3 MMI System Architecture
6.7 GM Cockpit SoC
6.7.1 Intelligent Cockpit SoC
6.7.2 Decomposition of GM MY21 INFO3.5 Cockpit
6.7.3 Automotive Chip Layout
6.7.4 Planning 
6.8 Ford Cockpit SoC
6.8.1 SYNC Chip Evolution  
6.8.2 The Next-generation Cockpit System Is Planned to Adopt Android Automotive System and NXP SoC 
6.8.3 SYNC+ Chip Evolution
6.8.4 Free Chip Replacement  
6.8.5 Cockpit SoC of Main Models
6.8.6 SYNC4.0 Hardware
6.8.7 Chip Layout Planning
6.9 Volvo Cockpit SoC
6.9.1 Cockpit SoC
6.9.2 Cockpit of XC90 BEV
6.9.3 Volvo and Qualcomm Cooperate to Deploy Intelligent Cockpits
6.9.4 Cockpit of Battery-electric SUV EX90  
6.10 Toyota Cockpit SoC
6.10.1 Cockpit SoC
6.10.2 Cockpit Decomposition of Tundra  
6.10.3 Intelligent Cockpit of GAC Toyota T-SMART
6.11 Hyundai Cockpit SoC
6.11.1 Cockpit SoC
6.11.2 Hyundai and Samsung Co-develop Automotive Semiconductors
6.12 Tata Cockpit SoC
6.12.1 Intelligent Cockpit Architecture
6.12.2 Functional Safety in Intelligent Cockpit Architecture
6.13 Great Wall Motor Cockpit SoC
6.13.1 Intelligent Cockpit SoC Layout
6.13.2 Intelligent Cockpit SoC Configuration of Major Brands  
6.13.3 Coffee Intelligence 2.0 - Intelligent Cockpit
6.13.4 Intelligent Cockpit Domain Layout Planning of Nobo Automotive Systems
6.13.5 Intelligent Cockpit Domain Products of Nobo Automotive Systems
6.13.6 Coffee OS Intelligence - Intelligent Cockpit Planning
6.14 GAC Cockpit SoC
6.14.1 Intelligent Cockpit Layout
6.14.2 High-performance Immersed Cockpit: ADiGO PARK Metaverse
6.14.3 Cockpit SoC of Main Models
6.14.4 Chip of GAC ADiGO Intelligent Driving Interconnection 4.0 
6.14.5 GAC Trumpchi M8 Grand Master 
6.14.6 Computing Unit SoC of GAC AION X-Soul Architecture 
6.15 Changan Cockpit SoC
6.15.1 Intelligent Cockpit SoC
6.15.2 Intelligent Cockpit SoC of Main Models
6.15.3 Super Digital Platform Architecture
6.16 SAIC Cockpit SoC
6.16.1 Intelligent Cockpit SoC
6.16.2 Z-One’s Latest Galaxy Intelligent Cockpit Solution
6.16.3 Z-One Cockpit and Driving Integrated HPC  
6.16.4 Z-One Intelligent Cockpit Computing Platform: ZCM
6.16.5 Z-One Galaxy? Cockpit and Driving Integrated Computing Platform: ZXD
6.16.6 Partners
6.17 Geely Cockpit SoC
6.17.1 Cockpit SoC
6.17.2 Cockpit SoC Layout
6.17.3 Cockpit SoC Configuration of Main Models
6.17.4 Smart, ECARX and AMD Immersive Intelligent Cockpit
6.17.5 Cockpit SoC Planning in Smart Geely 2025
6.18 BAIC Cockpit SoC
6.18.1 Passenger Car Cockpit SoC
6.18.2 @me Intelligent Cockpit with Kirin Chips
6.18.3 Cockpit of ARCFOX αS HI
6.18.4 Cockpit Configuration of Rubik's Cube
6.19 FAW Hongqi Cockpit SoC
6.19.1 Cockpit SoC
6.19.2 Intelligent Cockpit Platform SoC
6.19.3 Cockpit and Driving Integration Chip and "Flag" Intelligent Architecture
6.19.4 Cockpit SoC of Main Models
6.20 Chery Cockpit SoC
6.20.1 Cockpit SoC Configuration of Major Brands and Models
6.20.2 Lion Ecology 2023
6.20.3 Chip Configuration of Lion 4.0 System
6.20.4 EXEED STELLAR Intelligent Cockpit SoC
6.20.5 AutoChips and Chery Built a Joint Laboratory for Automotive Chips to Promote the Research and Development of Automotive-grade Chips 
6.21 Dongfeng Voyah Cockpit SoC
6.21.1 Cockpit SoC
6.21.2 Cockpit of Zhuiguang
6.21.3 Cockpit of Voyah Dreamer
6.21.4 Cockpit SoC of Dongfeng’s Other Brands
6.22 Li Auto Cockpit SoC
6.22.1 Cockpit SoC
6.22.2 L9 Cockpit
6.22.3 ONE Cockpit Chip
6.23 NIO Cockpit SoC
6.23.1 Cockpit SoC
6.23.2 Cockpit System Evolution
6.23.3 NIO and Qualcomm Announced Cooperation
6.24 Xpeng Cockpit SoC
6.24.1 Cockpit SoC
6.24.2 Iteration of Intelligent Cockpit Xmart OS from 1.0 to 4.0
6.24.3 Xpeng and Qualcomm Reached Strategic Cooperation to Promote the Application of the Next-generation Qualcomm Snapdragon Chips 
6.25 WM Cockpit SoC
6.25.1 Cockpit SoC
6.25.2 WM Connect Intelligent Digital Cockpit
6.25.3 IdeaL4 Technology Strategy
6.26 Hozon Cockpit SoC
6.26.1 Cockpit SoC of Neta Auto
6.26.2 Neta Intelligent Cockpit Domain Controller 1.0
6.26.3 Neta PIOVT 2.0 Intelligent Cockpit System
6.26.4 Neta Intelligent Cockpit Planning
6.27 Human Horizons Cockpit SoC
6.27.1 Cockpit SoC of HiPhi
6.27.2 HiPhi Human Oriented Architecture (HOA)
6.28 Leapmotor Cockpit SoC
6.28.1 Cockpit SoC
6.28.2 "2.0 Strategy" Aims to Create Evolvable Intelligent Cockpits 
6.29 Nissan Renault
6.29.1 Cockpit of Nissan Flagship EV Ariya
6.29.2 Decomposition of Cockpit of Renault Mégane E-Tech Electric
6.30 Honda
6.30.1 Honda Adopts Qualcomm Cockpit Chips
6.30.2 IVI Decomposition of the 2021 Honda Accord
6.31 Jaguar Land Rover
6.31.1 Single Hardware System

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

L3/L4 Autonomous Driving and Startups Research Report, 2024

The favorable policies for the autonomous driving industry will speed up the commercialization of L3/L4. In the second half of 2023, China introduced a range of policies concerning autonomous drivin...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024

At present, EEA is developing from the distributed type to domain centralization and cross-domain fusion. The trend for internal and external integration of domain controllers, especially the integrat...

Global and China Automotive Operating System (OS) Industry Report, 2023-2024

Chinese operating systems start to work hard In 2023, Chinese providers such as Huawei, Banma Zhixing, Xiaomi, and NIO made efforts in operating system market, launched different versions with competi...

Automotive RISC-V Chip Industry Research Report, 2024

Automotive RISC-V Research: Customized chips may become the future trend, and RISC-V will challenge ARM What is RISC-V?Reduced Instruction Set Computing - Five (RISC-V) is an open standard instructio...

Passenger Car CTP (Cell to Pack), CTC (Cell To Chassis) and CTB (Cell to Body) Integrated Battery Industry Report, 2024

Passenger Car CTP, CTC and CTB Integrated Battery Industry Report, 2024 released by ResearchInChina summarizes and studies the status quo of CTP (Cell to Pack), CTC (Cell To Chassis) and CTB (Cell to ...

Software-defined Vehicle Research Report, 2023-2024 - Industry Panorama and Strategy

1. How to build intelligent driving software-defined vehicle (SDV) architecture? The autonomous driving intelligent platform can be roughly divided into four parts from the bottom up: hardware platf...

Automotive DMS/OMS (Driver/Occupant Monitoring System) Research Report, 2023-2024

In-cabin Monitoring study: installation rate increases by 81.3% in first ten months of 2023, what are the driving factors? ResearchInChina released "Automotive DMS/OMS (Driver/Occupant Monitoring Sys...

Automotive Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2024

As intelligent connected vehicles boom, the change in automotive EEA has been accelerated, and the risks caused by electronic and electrical failures have become ever higher. As a result, functional s...

Autonomous Driving Map Industry Report,2024

As the supervision of HD map qualifications tightens, issues such as map collection cost, update frequency, and coverage stand out. Amid the boom of urban NOA, the "lightweight map" intelligent drivin...

Automotive Vision Industry Research Report, 2023

From January to September 2023, 48.172 million cameras were installed in new cars in China, a like-on-like jump of 34.1%, including: 9.209 million front view cameras, up 33.0%; 3.875 million side vi...

Automotive Voice Industry Report, 2023-2024

The automotive voice interaction market is characterized by the following: 1. In OEM market, 46 brands install automotive voice as a standard configuration in 2023. From 2019 to the first nine month...

Two-wheeler Intelligence and Industry Chain Research Report, 2023

In recent years, two-wheelers have headed in the direction of intelligent connection and intelligent driving, which has been accompanied by consumption upgrade, and mature applications of big data, ar...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号