Intelligent Vehicle E/E Architecture and Computing Platform Industry Research Report, 2021
  • Aug.2021
  • Hard Copy
  • USD $4,200
  • Pages:260
  • Single User License
    (PDF Unprintable)       
  • USD $4,000
  • Code: ZHP113
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,000
  • Hard Copy + Single User License
  • USD $4,400
      

E/E Architecture and Computing Platform Industry Research: Three Evolution Stages of Automakers’ E/E Architectures

Domain centralized architectures will gradually evolve to quasi-central and central computing architectures

The evolution of the brand-new automotive E/E architecture, which may take ten years, can be divided into three stages:

(1) Domain centralized architecture stage

At present, automakers mainly stay at the domain centralized architecture stage. For example, Volkswagen's E3 architecture, Great Wall’s GEEP3.0 architecture, BYD's E platform 3.0 architecture, Geely's SEA architecture, Xpeng's EE 2.0 architecture, etc. are all typical domain centralized architectures.

Automotive E/E architectures will inevitably develop towards centralized E/E architectures. From the perspective of mass-produced models, centralized E/E architectures prevail now, with domain control over power, chassis, body, intelligent driving and cockpit. However, it is difficult to fully realize standard domain architectures and central architectures due to technical thresholds, diversified configuration gradients, consumption habits and other factors, so the domain hybrid architecture of "distributed ECUs + domain controllers" will be common in the short term.

At present, Volkswagen, BMW, Geely ZEEKR, Huawei, Visteon, etc. adopt three-domain E/E architecture solutions which mainly include intelligent driving domain, intelligent cockpit domain, and vehicle controller domain.

Volkswagen has upgraded the MQB distributed E/E architecture to the MEB (E3) domain centralized E/E architecture which includes 3 domain controllers: vehicle control (ICAS1), intelligent driving (ICAS2), and intelligent cockpit (ICAS3). Modules such as chassis and airbags that do not have integration capabilities belong to ICAS1. At present, ICAS1 and ICAS3 have been developed and installed on ID.3, ID.4 and other models, while ICAS2 has not been developed yet.

In terms of the software architecture, E3 adopts a service-oriented architecture, using CP and AP service middleware to enable SOA communication; as for the communication architecture, E3's backbone network is Ethernet.

On the CC architecture, Huawei has launched three domain control platforms of intelligent cockpit (CDC), vehicle control (VDC), and intelligent driving (MDC) respectively, and released related open platforms and operating systems, such as the autonomous driving operating system AOS, the intelligent cockpit operating system HarmonyOS and the vehicle control operating system VOS.

In terms of communication architecture, the CC architecture has set up 3-5 VIUs (vehicle interface units). All actuators and sensors are connected to distributed gateways so as to form loops. Once a single loop fails to work, the other three loops maintain operation, hereby effectively improving safety.

(2) Quasi-central computing architecture stage

In the next step, automakers will work hard in the quasi-central architecture of “the central computing platform + regional controllers”. Through SOA, it shares the computing power of different domain controllers like a central computing platform. The GEEP 4.0 architecture to be launched by Great Wall in 2022 and the FEEA3.0 architecture (to be mass-produced in 2023) released by FAW Hongqi in 2021 are quasi-central architectures.

Tesla’s EEA architecture is the most advanced, at least 5 years ahead of that of traditional automakers. The E/E architecture of Model 3 has marked Tesla’s entry into the quasi-central architecture stage consisting of central computing module (CCM), Body Control Module Left (BCMLH) and Body Control Module Right (BCMRH), basically materializing the prototype of a centralized architecture with the self-developed Linux, FOTA of the whole vehicle and communication via the Ethernet backbone network.

Tesla's quasi-central E/E architecture has sparked a harness revolution. The wiring harness of Model S/Model X is as long as 3 kilometers, while Model 3 reduces the wiring harness length to 1.5 kilometers, and Model Y further shortens it to around 1 kilometer. Tesla's plans to make the length as short as 100 meters.

(3) Central computing architecture stage

From the perspective of development trends, the automotive E/E architecture will eventually evolve to the central computing architecture, concentrating the functional logic to a central controller. The OEM Great Wall plans to launch the central computing architecture GEEP 5.0 in 2024, and Changan also intends to complete the development of its central domain architecture in 2025.

Evolution of Automotive E/E Architecture

EE 1_副本.png

Source: ENOVATE

In the next 3-5 years, OEMs will focus on R&D and layout of quasi-central architectures

As per the E/E architecture solutions of traditional automakers, most OEMs at home and abroad have transferred from distributed architectures to domain centralized architectures, and they have taken quasi-central architectures as the focus of R&D and layout in the next 3-5 years. Quasi-central and centralized architectures can effectively reduce the number of controllers and wiring harnesses, promote the further decoupling of automotive hardware and software, and drag down the cost further. In order to keep up with the upgrades of automotive technology, OEMs speed up the deployment of quasi-central architectures, introduce SOA architectures and make layout in central computing platforms, etc..

Features of Next-generation E/E Architectures of Some OEMs

EE 2_副本.png
 
Source: ResearchInChina 

Great Wall has independently developed the GEEP E/E architecture which has evolved to the third-generation GEEP 3.0 so far. As the domain control architecture, it boasts 4 domain controllers. With integrated software and hardware and self-developed application software, it has been successfully applied to all models. At present, Great Wall is actively developing the fourth- and fifth-generation E/E architectures.

As “the central computing platform + regional controllers” architecture, the fourth-generation E/E architecture of Great Wall comprises three large computing platforms for central computing, intelligent cockpit, and optional advanced autonomous driving respectively. The central computing platform integrates body, gateways, air conditioning, EV, power chassis and ADAS, featuring cross-domain integration. It is scheduled to be launched in 2022. The fifth-generation E/E architecture is to highly concentrate the entire automotive software in a central brain to achieve 100% SOA, and it will be available in 2024.

Evolution of Great Wall’s E/E Architecture

EE 3_副本.png

Source: ResearchInChina 

The FEEA2.0E/E architecture developed by FAW Hongqi independently is a domain control architecture consisting of a new energy vehicle controller, a L3/L4 autopilot controller, and a central gateway controller. It has been mass-produced for E-HS9. FEEA3.0, a next-generation E/E architecture, was released in April 2021 as a quasi-central architecture of “the central computing platform + regional controllers”, reducing the number of controllers and the total length of the wiring harness by more than 50%, as well as adding. It is planned to be deployed on Hongqi EV-Concept in 2023.

Trends under new E/E architectures
As automotive E/E architectures gradually develop toward central architectures, the centralization of computing power, software services, and peripheralization of sensors and actuators tend to be more obvious; the industrial chain structure has been reshaped, and the business model has undergone significant changes.

(1) The supply chain system is reshaped

Under the traditional distributed E/E architecture, the hardware and algorithms of controllers are provided by Tier 1 suppliers and OEMs coordinate different suppliers, so that the collaboration is extremely inefficient.

Under the new E/E architecture, OEMs enjoy the dominance. Based on their own software and hardware platforms, they directly convey their demand to suppliers, among which Tier 1 suppliers are no longer dominant while Tier 0.5 suppliers emerge to provide algorithms and software for autonomous driving.

EE 4_副本.png

(2) The traditional "turnkey" model transfers to the "full stack" development model

OEMs manipulate the development of software platforms (covering functions integrated, suppliers, etc.) to accomplish deeper development. With the development of autonomous driving technology, OEMs are more inclined to carry out "full-stack" development: they gradually master E/E architectures, operating systems, core algorithms, cloud big data, chips and other capabilities, then provide sustainable and iterative product experience and services with a focus on smart scenarios and consumer experience.

(3) Business models are innovated, and the vehicle OTA sees the completed closed loop of business models 

In addition, with the evolution of E/E architectures and the rapid development of vehicle OTA, the sales models of automobiles have altered accordingly. Automakers have turned from one-time product providers to “products + full life cycle services” providers. Around smart scenarios and consumer experience, they provide sustainable and iterative product experience and services. Emerging automakers represented by Tesla update software to iterate and upgrade vehicles.

In addition to vehicle sales, OEMs may charge software updates via OTA in the future. For example, the leader Tesla has earned more than USD1.2 billion from software updates.

EE 5_副本.png

Intelligent Vehicle E/E Architecture and Computing Platform Industry Research Report 2021 by ResearchInChina mainly studies the following:

20120114.gifOverview, technology evolution trends, reform trends, market size, etc. of automotive E/E architectures;
20120114.gifStatus quo, evolution trends, etc. of E/E architectures of major OEMs (emerging brands, independent brands, foreign brands);
20120114.gifStatus quo, planning, etc. of E/E architectures of major Tier 1 enterprises;
20120114.gifStatus quo of main E/E architectures (including computing architecture, software architecture, communication architecture, power management architecture, etc.); 20120114.gifSolutions of major manufacturers; evolution of new E/E architectures.

1 Introduction to Automotive E/E Architecture
1.1 Overview of Automotive E/E Architecture
1.1.1 Background of Automotive E/E Architecture Updates
1.1.2 Four Dimensions of Automotive E/E Architecture Updates
1.1.3 Hardware Architecture Updates: Distributed Architecture Develops toward Domain Control/Centralized Architecture 
1.1.4 Hardware Architecture Updates: Domain Centralized EEA
1.1.5 Hardware Architecture Updates: Three-domain E/E Architecture
1.1.6 Hardware Architecture Updates: Electronic Control Hardware Architecture Updates
1.1.7 Hardware Architecture Updates: Centralized Computing + Domain Controllers
1.1.8 Hardware Architecture Updates: Centralized E/E Architecture
1.1.9 Hardware Architecture Updates: Automotive Central Computer
1.1.10 Software Architecture Updates: (1)
1.1.11 Software architecture Updates: (2)
1.1.12 Software architecture Updates: (3)
1.1.13 Communication Architecture Updates: The Vehicle Backbone Network Evolves to Ethernet
1.1.14 Communication Architecture Updates: Trends of Electronic Control Communication Interfaces
1.1.15 Power Architecture Updates

1.2 Evolution Trends of Automotive E/E Architecture 
1.2.1 Demand of Intelligent Connected Vehicles for EEA
1.2.2 EEA Technology Classification of Intelligent Connected Vehicles
1.2.3 Development Trends of Automotive E/E Architecture
1.2.4 Evolution Trends of Automotive E/E Architecture in the Next Ten Years
1.2.5 The Driving Force of OEMs and Tier1 Suppliers for Promoting E/E Architecture Revolution
1.2.6 Cooperation Modes between OEMs and Tier1 Suppliers under traditional distributed architecture
1.2.7 Cooperation Modes between OEMs and Tier1 Suppliers under Domain Control architecture (1)
1.2.8 Cooperation Modes between OEMs and Tier1 Suppliers under Domain Control architecture (2)

1.3 Trends of E/E Architecture Revolution
1.3.1 E/E Architecture Revolution: Centralized Computing
1.3.2 E/E Architecture Revolution: Software Services
1.3.3 E/E Architecture Revolution: Peripheralization of Sensors and Actuators
1.3.4 E/E Architecture Revolution: Agile Development Organization
1.3.5 E/E Architecture Revolution: Deep Cooperation Models
1.3.6 E/E Architecture Revolution: Reshaping of the Supply Chain System
1.3.7 E/E Architecture Revolution: Transformation of Development Models
1.3.8 E/E Architecture Revolution: Business Models Innovation

1.4 Market Size 
1.4.1 Value of Main Components on a Single Vehicle under New E/E Architecture
1.4.2 E/E Architecture Market Size

2 E/E Architecture Planning of OEMs

2.1 E/E Architecture Comparison of OEMs
2.1.1 E/E Architecture Roadmap of Automakers (1) 
2.1.2 E/E Architecture Roadmap of Automakers (2) 
2.1.3 E/E Architecture Roadmap of Automakers (3) 
2.1.4 E/E Architecture Roadmap of Automakers (4) 
2.1.5 Features of E/E Architecture of Major OEMs (1) 
2.1.6 Features of E/E Architecture of Major OEMs (2) 
2.1.7 Features of E/E Architecture of Major OEMs (3) 
2.1.8 Features of E/E Architecture of Major OEMs (4) 
2.1.9 OEMs Will Focus on Domain Hybrid before 2025 

2.2 E/E Architecture of Emerging Automakers
2.2.1 Tesla’s E/E architecture Evolution (1) 
2.2.2 Tesla’s E/E architecture Evolution (2) 
2.2.3 E/E Architecture of Model 3
2.2.4 Features of E/E Architecture of Model 3 (1) 
2.2.5 Features of E/E Architecture of Model 3 (2) 
2.2.6 E/E Architecture of Model X  
2.2.7 E/E Architecture of Model S  
2.2.8 Xpeng’s E/E Architecture (1) 
2.2.9 Xpeng’s E/E Architecture (2) 
2.2.10 NIO’s E/E Architecture 
2.2.11 HOA Architecture of Human Horizons
2.2.12 E/E Architecture of Nezha U  
2.2.13 E/E Architecture of ENOVATE  

2.3 E/E Architecture of Independent Brands
2.3.1 Changan's E/E Architecture Evolution Roadmap
2.3.2 E/E Architecture Evolution Roadmap of Great Wall
2.3.3 The Fourth-generation E/E Architecture of Great Wall
2.3.4 GAC's E/E Architecture Evolution Roadmap
2.3.5 SEA Architecture of Geely (Lynk & Co)
2.3.6 Volvo's Zonal Architecture
2.3.7 BYD's E/E Architecture
2.3.8 E/E Architecture of BYD's e-Platform 3.0
2.3.9 BYD's E/E Architecture
2.3.10 E/E Architecture of SAIC (IM)
2.3.11 E/E Architecture of FAW Hongqi 

2.4 E/E Architecture of Foreign and Joint Venture Brands  
2.4.1 Volkswagen's E/E Architecture Evolution 
2.4.2 Volkswagen's MEB Platform
2.4.3 Volkswagen's MEB Platform "E3" Architecture (1)
2.4.4 Volkswagen's MEB Platform "E3" Architecture (2)
2.4.5 Volkswagen's MEB Platform "E3" Architecture: Software Architecture (1)
2.4.6 Volkswagen's MEB Platform "E3" Architecture: Software Architecture (2)
2.4.7 Volkswagen's MEB Platform "E3" Architecture: Hardware Architecture
2.4.8 Volkswagen's ID.4 E/E Architecture
2.4.9 Volkswagen's ID.4 Network Architecture
2.4.10 BMW's E/E Architecture Evolution
2.4.11 BMW's Next-generation E/E Architecture (1)
2.4.12 BMW's Next-generation E/E Architecture (2)
2.4.13 Toyota's Zonal Architecture (1)
2.4.14 Toyota's Zonal Architecture (2)
2.4.15 New E/E Architecture of MAN Truck & Bus (1)
2.4.16 New E/E Architecture of MAN Truck & Bus (2)
2.4.17 GM's E/E Architecture Evolution
2.4.18 GM's VIP E/E Architecture

3 E/E Architecture Planning of Tier 1 Suppliers

3.1 E/E Architecture Comparison of Tier 1 Suppliers
3.2 Layout of Tier 1 Suppliers under New E/E Architecture: Autonomous Driving  
3.3 Layout of Tier 1 Suppliers under New E/E Architecture: Intelligent Cockpit

3.4 Huawei’s E/E Architecture 
3.4.1 Intelligent Connected Vehicle Architecture
3.4.2 CC Architecture for Intelligent Vehicles with "Computing + Communication" (1)
3.4.3 CC Architecture for Intelligent Vehicles with "Computing + Communication" (2)
3.4.4 CCA architecture + Vehicle Stack Cross-domain Integrated Architecture (1)
3.4.5 CCA architecture + Vehicle Stack Cross-domain Integrated Architecture (2)
3.4.6 Value of CCA Architecture + Vehicle Stack Cross-domain Integrated Architecture
3.4.7 Advantages of CCA Architecture (1)
3.4.8 Advantages of CCA Architecture (2)
3.4.9 Advantages of CCA Architecture (3)
3.4.10 Based on CC Architecture, MDC+CDC+VDC Domain Control Platforms Were Launched

3.5 Visteon's E/E Architecture
3.5.1 E/E Architecture Technology Evolution
3.5.2 E/E Architecture Planning: Three-domain Architecture and Zone Controller
3.5.3 E/E Architecture Planning: Function Allocation of Supper Core and Zone
3.5.4 E/E Architecture Planning: Challenges for Zonal Architecture

3.6 Bosch's E/E Architecture
3.6.1 Concept of Zonal Architecture
3.6.2 E/E Architecture: Next-generation Automotive Architecture Evolution and Division Logic
3.6.3 E/E Architecture: Vehicle Central Computer (VCC) and SOA Architecture

3.7 Aptiv's E/E Architecture
3.7.1 E/E Architecture Evolution 
3.7.2 Smart Vehicle Architecture Design (SVATM)
3.7.3 SVA Topology
3.7.4 Domain Controller Solutions Will Be Mass-produced in 2022
3.7.5 Satellite Architecture Platform for Autonomous Driving

3.8 Continental's E/E Architecture 
3.8.1 E/E Architecture Evolution 
3.8.2 Domain Controller Development Concept for SOA Architecture (1)
3.8.3 Domain Controller Development Concept for SOA Architecture (2)
3.8.4 Commercial Vehicle E / E Architecture

3.9 E/E Architecture of UAES
3.9.1 Future Automotive E/E Architecture
3.9.2 SOA Architecture Application under New EEA

3.10 Jingwei Hirain Technologies
3.10.1 E/E Architecture Development Services
3.10.2 Automotive E/E Bus Network Design
3.10.3 Adaptive AUTOSAR Solution
3.10.4 AP Software Component Architecture

4 Computing Architecture and Technical Solutions
4.1 Domain Controller Hardware Design Trends
4.1.1 Key Domain Control Hardware Technologies
4.1.2 Features of Domain Controller Architecture
4.1.3 Advantages of Domain Controller Architecture
4.1.4 Demand Analysis of Domain Controller Software and Hardware Development
4.1.5 Demand Analysis of Domain Controller Software and Hardware Development (1): Hardware Architecture
4.1.6 Demand Analysis of Domain Controller Software and Hardware Development (2): Software Architecture
4.1.7 Demand Analysis of Domain Controller Software and Hardware Development (3): Interface
4.1.8 Design Challenges for Domain Control Hardware - PI Power Integrity
4.1.9 Design Challenges for Domain Control Hardware - SI Signal Integrity
4.1.10 Design Challenges for Domain Control Hardware - EMC
4.1.11 Design Challenges for Domain Control Hardware - Power Consumption and Heat Dissipation
4.1.12 Design Challenges for Domain Control Hardware - Design Lifespan
4.1.13 Design Challenges for Domain Control Hardware - Test and Verification
4.1.14 Design Challenges for Domain Control Hardware - Higher Process Demand

4.2 Autonomous Driving Domain Controllers 
4.2.1 Relationship between ADAS/AD Controllers and Autonomous Driving Levels
4.2.2 L3-L4 Domain Centralized System Solutions
4.2.3 Development Trends of Autonomous Driving Domain Controllers
4.2.4 Competitive Landscape of Autonomous Driving Domain Controllers
4.2.5 A Computing Power Race Is Starting in the Field of Intelligent Driving 
4.2.6 Embedded Computing Power, Software Updates via OTA

4.3 Smart Cockpit Domain Controllers
4.3.1 Development Trends of Smart Cockpits
4.3.2 Next-generation Smart Cockpit System Framework
4.3.3 Competitive Landscape of Smart Cockpit Domain Controllers
4.3.4 Development Trends of Cockpit Domain Control Chips
4.3.5 Future Development Trends of Cockpit Processors: High Computing Power, Scalability, AI  

4.4 Cross-domain Integrated Hardware Solutions under New E/E Architecture
4.4.1 Bosch's Cross-domain Integration Solution: Cockpit Domain Integration Control Products
4.4.2 Bosch's Cross-domain Integration Solution: Cockpit Domain Integration Control Products
4.4.3 Bosch Established the Intelligent Driving and Control Division to Achieve Cross-domain Integration
4.4.4 Continental's Cross-domain Integration Solution: Automotive Server (ICAS1) in HPC Architecture
4.4.5 Harman's Cross-domain Integration Solution: Intelligent Cockpit Pre-integrates ADAS Functions
4.4.6 ThunderSoft's Cross-domain Integration Solution

5 Software Architecture and Technical Solutions
5.1 Intelligent Vehicle Software Architecture and Development Models
5.1.1 Intelligent Vehicle Software Architecture Includes Virtual Machines, System Kernels, Middleware, Functional Software and Applications
5.1.2 Layered Architecture of Intelligent Vehicle Software 
5.1.3 Core Scope of Intelligent Vehicle Software (1): Overall Architecture
5.1.4 Core Scope of Intelligent Vehicle Software (2): Power and Chassis Controllers
5.1.5 Core Scope of Intelligent Vehicle Software (3): Body Controllers
5.1.6 Core Scope of Intelligent Vehicle Software (4): Central Computing Units
5.1.7 Core Scope of Intelligent Vehicle Software (5): Software and Hardware Design Goals
5.1.8 Vehicle Software architecture and Heterogeneous SoC Chip Collaboration
5.1.9 Future Automotive Software Architecture Evolution Trends
5.1.10 Intelligent Vehicle Software Will Gradually Move towards the "Platform + Ecology" Model
5.1.11 Intelligent Vehicle Software Business Model Transformation
5.1.12 Automakers Charge Software Authorization and OTA Updates from the C-end to Complete the Closed loop of Business Models

5.2 SOA Software Solutions under New E/E Architecture
5.2.1 SOA Basic Software Architecture
5.2.2 Features of SOA Software Architecture
5.2.3 Transformation of SOA Communication: from CAN Communication to Ethernet Communication
5.2.4 SOA Architecture Design under Central Computing E/E Architecture
5.2.5 SOA Software Deployment of OEMs
5.2.6 Huawei’s Automotive Basic Software and SOA Service Framework
5.2.7 Software Framework of Neusoft Reach for SOA
5.2.8 AP Pre-research and Application of Jingwei Hirain Technologies
5.2.9 Software SOA Platform Architecture of SAIC Z-One
5.2.10 Launch Timetable of SAIC Z-One's Software SOA Software Developer Platform
5.2.11 Continental's Domain Controller Development Concept for SOA Architecture (1) 
5.2.12 Continental's Domain Controller Development Concept for SOA Architecture (2) 
5.2.13 Bosch's Vehicle Central Computing (VCC) SOA Software Architecture
5.2.14 ArcherMind's SOA Technology Architecture
5.2.15 ArcherMind's SOA Business Model
5.2.16 SOA-supported Multi-domain Integrated Software Platform of Enjoy Move Technology
5.2.17 Progress in Mass Production of SOA Software Platforms of OEMs and Tier 1 Suppliers (1) 
5.2.18 Progress in Mass Production of SOA Software Platforms of OEMs and Tier 1 Suppliers (2) 
5.2.19 Progress in Mass Production of SOA Software Platforms of OEMs and Tier 1 Suppliers (3) 
5.2.20 Progress in Mass Production of SOA Software Platforms of OEMs and Tier 1 Suppliers (4) 

6 Communication Architecture and Technical Solutions 
6.1 Development Trends of Communication Architecture
6.1.1 Existing Applications of In-Vehicle Networks (IVNs)
6.1.2 Automotive Backbone Network will Shift to Automotive Ethernet
6.1.3 Development Stages of Automotive E/E Bus Architecture 
6.1.4 The next-generation Centralized Automotive E/E Network Architecture Will Be Divided into Three Layers
6.1.5 Classification of Next-generation Automotive Network Architecture and Gateway Topology: Domain Centralized, Centralized and Hybrid Types
6.1.6 Trends of Communication Architecture under SOA Architecture

6.2 Development Trends of Ethernet
6.2.1 Three Development Stages of Automotive Ethernet
6.2.2 From the Control Domain Architecture to the Zonal Architecture, the 10G+ Automotive Ethernet Process May Be Faster Than Expected
6.2.3 Highly Autonomous Driving Requires 10G+ Interconnection Bandwidth
6.2.4 In Addition to Multi-gigabit Automotive Ethernet, the Application of Low-cost 10M Automotive Ethernet Is Also Worthy of Attention
6.2.5 Development of Automotive Ethernet: EVBA and TSN Time-sensitive Networks
6.2.6 Core of L4 Autonomous Driving System: TSN Ethernet Switch and 802.1CB Protocol
6.2.7 The Future Complementarity of Ethernet and MIPI/LVDS May Outweigh the Competition between Them
6.2.8 Promotion Concept of Automotive Ethernet

6.3 Development Trends of Intelligent Gateway Modules  
6.3.1 Automotive Gateway Module System Architecture and Supply Chain
6.3.2 Evolution Trends of Distributed Gateway, Central Gateway and Ethernet Gateway Topology
6.3.2 Central Gateway Will Change Automotive Architecture
6.3.3 Gateway Controllers Play the Role of Automotive Data Servers in the Future E/E Architectures
6.3.4 New E/E Architecture Will Adopt Service-oriented Gateway
6.3.5 The Computing Performance of the New Service Gateway Controller Will Be Improved by More Than Ten Times
6.3.6 Automotive Gateway of Future SOA Architecture (ie. Zonal)
6.3.7 Automotive Gateway SoC Control Chips and Communication Protocols 
6.3.8 Innovative Next-generation Gateway System Should Support Various High-speed I/O (such as PCIe switches)
6.3.9 Parameter Comparison of Five Main Smart Gateway Chips

6.4 Communication Architecture Solutions under New E/E Architecture 
6.4.1 Aquantia's Future Automotive Network
6.4.2 Bertone's Prediction for Future Automotive Backbone Network
6.4.3 Renesas' Vision for Future Automotive Architecture
6.4.4 Tier1 Solutions of Intelligent Power Distribution for Passenger Cars
6.4.5 DRA829V Automotive Computing Gateway Platform of Texas Instruments 
6.4.6 TI' Jacinto DRA821 Processor Is Used in the Zonal EEA Gateway
6.4.7 Development Roadmap of NXP's Gateway Processor

7 Power Management Architecture and Technical Solutions
7.1 Autonomous Driving Power Supply Network
7.1.1 Power Supply Network System of Autonomous Vehicles
7.1.2 Dual Power Supply System and Control Strategy Design
7.1.3 Working Modes and Main Diagnosis Strategies of Automotive Dual Power Supply System

7.2 Application of Intelligent Power Distribution E-fuse
7.2.1 Development Process of Fuse Boxes
7.2.2 Current Mainstream Fuse Boxes  
7.2.3 Efuse Intelligent Power Distribution Products
7.2.4 Intelligent MOSFET Replaces Traditional Fuses and Mechanical Relays
7.2.5 Features and Advantages of Intelligent MOSFET Electrical Boxes
7.2.6 Arrangement of Intelligent MOSFET Electrical Boxes
7.2.7 Three Development Stages of Intelligent MOSFET Electrical Boxes
7.2.8 Three Stages of Intelligent Automotive Power Management Evolution

7.3 Intelligent Power Management Solutions under New E/E Architecture
7.3.1 Electrical Architecture Evolution of Model S - Model X - Model 3
7.3.2 Central Computing Module of Model 3
7.3.3 Controller Node Power Distribution of Tesla Model 3
7.3.4 Front Body Control Module (FBCM) of Tesla Model 3
7.3.5 Tesla Body Controller Front
7.3.6 Tesla Body Controller Left
7.3.7 Tesla Body Controller Right
7.3.8 Technical Features of Body Controller of Tesla Model 3 
7.3.9 Power Distribution Strategy of Volvo's SPA2 Domain Control Architecture 
7.3.10 Hierarchical Power Distribution Strategy of Visteon’s Zonal (Domain Control) E/E Architecture
7.3.11 Intelligent Power Distribution for Vehicle Partitions of Visteon’s Zonal (Domain Control) E/E Architecture 
7.3.12 Aptiv's INTELLIGENT FUSE Power Distribution and Domain Controller (1)
7.3.13 Aptiv's INTELLIGENT FUSE Power Distribution and Domain Controller (2)
7.3.14 Tier1 Solution Suppliers of Intelligent Power Distribution for Passenger Cars
 

New Energy Vehicle Thermal Management System Market Research Report, 2021

Research on EV Thermal Management System: Fast iterative Application of New Technologies such as Heat Pump Air conditioning and Fourth-generation Refrigerant China's new energy vehicle thermal manage...

Automotive Cockpit Multi and Dual Display Trend Report, 2021

In 2021H1, the sales of vehicle models with console multi and dual display surged by 61% and 155% on a like-on-like basis, respectively Our Automotive Cockpit Multi and Dual Display Trend Report, 202...

Automotive Smart Cockpit Design Trend Report, 2021

Smart Cockpit Design Trend Research: Moving to the third living space With the continuous development of cockpit hardware and software technology, intelligent cockpit design is evolving, pivoting fro...

Global and China Automotive PCB Industry Report, 2021

Automotive PCB research: vehicle intelligence and electrification bring about demand for PCBs, and local manufacturers come to the fore. The share of electronics in curb weight of a vehicle is rising,...

Automotive Infrared Night Vision System Research Report, 2021

Infrared night vision research: as 60% traffic accidents happen at night, infrared imaging technology comes as an effective solution. This report combs through development trends and market size of ...

Intelligent Vehicle E/E Architecture and Computing Platform Industry Research Report, 2021

E/E Architecture and Computing Platform Industry Research: Three Evolution Stages of Automakers’ E/E ArchitecturesDomain centralized architectures will gradually evolve to quasi-central and central co...

Automotive Head-up Display (HUD) Industry Report, 2021

HUD industry research: rapid adoption of OEM HUD in vehicles is under way and Chinese auto brands perform well. Head-up display (HUD) projects key information onto the transparent media or windshiel...

Global and China Hybrid Vehicle Industry Research Report, 2021

Research on hybrid vehicles: Five global major hybrid technologies compete fiercely in China The hybrid technology is one of the important technology roadmaps to achieve emission peak, carbon neutral...

Automotive T-Box Ranking and Comparison Analysis Report, 2021

Automotive T-Box Ranking and Comparison Analysis Report, 2021 conducts comparison of T-BOX parameters of 15 vendors, and the comparative items include:size, power consumption, 5G support, 4G support, ...

Autonomous Heavy Truck Industry Report, 2020-2021

Autonomous heavy truck research: front runners first going public Our Autonomous Heavy Truck Industry Report, 2020-2021 carries out research into highway scenario-oriented autonomous heavy truck ind...

Software-defined vehicle Research Report 2021: Architecture Trends and Industry Panorama

The overall architecture of software-defined vehicles can be divided into four layers:(1) The hardware platform and heterogeneous distributed hardware architecture;(2) The system software layer, inclu...

Global and China Commercial Vehicle Telematics Industry Report, 2021

In 2021, China’s commercial vehicle intelligent connected terminal industry heads in the following three directions. The first-generation commercial vehicle intelligent connected terminals mainly fo...

Automotive Chassis-by-Wire Industry Report, 2020-2021

Chassis-by-Wire Research: China’s Brake-by-Wire Assembly Rate Is only 2%, Indicating Huge Growth Potentials With the mass production of L3-L4 autonomous driving, the necessity of Chassis-by-Wire has...

China Automotive Steering System Industry Report, 2021

Automotive steering system research: EPS dominates the market, SBW prepares for fully autonomous driving After hundreds of years of development, automotive steering systems have derived HPS, EHPS, EP...

Global and China L4 Autonomous Driving and Start-ups Report, 2021

In April 2021, Waymo’s CEO and CFO left the company. In addition, the Chief Safety Officer, head of manufacturing and global supply and general manager of Laser Bear LiDAR business, head of Automotive...

Global and China Automotive OTA Industry Report, 2021

Automotive OTA research: OTA capabilities determine the success or failure of the transformation of OEMs In recent years, automotive OTA configurations have maintained a rapid growth trend. According...

Global and China Automotive Lighting Industry Report, 2021

Global and China Automotive Lighting Industry Report, 2021 combs through intelligence trends of automotive lighting, technology routes, laws and regulations for automotive lighting industry, competiti...

China Automotive Ultrasonic Radar and OEM Parking Roadmap Research Report, 2021

China Automotive Ultrasonic Radar & OEM Parking Roadmap Research Report, 2021 combs through automotive ultrasonic radar market characteristics, suppliers, development trends and OEM’s automatic pa...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号